Td corrigé S7 de Psychologie Sociale - TD n° 3 pdf

S7 de Psychologie Sociale - TD n° 3

Par exemple, sous l'onglet "Stats Descriptives", on pourra utiliser le bouton " Boîtes à ... Utilisez le menu Statistiques - ANOVA, puis "ANOVA à un facteur" et .... Sujet. Position. Nb Mots. 1. s1. 1. 17. 2. s2. 1. 14. 3. s3. 1. 17 ... 9. s1. 2. 13. 10. s2. 2.




part of the document



Master de Psychologie PSY73B : Informatique : traitement des données - TD N°2 Analyse de variance


Analyse de variance à un facteur de variation. Plan S.
Des groupes indépendants de sujets ont été soumis aux différents niveaux d'un facteur A. On souhaite tester l'effet des différents niveaux du facteur A sur le comportement des sujets, évalué à l'aide d'une variable dépendante X. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Résidu aléatoire.
La forme générale du tableau d'analyse de variance correspondant est la suivante :

Sources de variationSomme des CarrésddlCarrés MoyensFpFacteur A EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Résidu S(A) EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 Total EMBED Equation.3  EMBED Equation.3 
La statistique F suit une loi de Fisher Snedecor à (a-1) et (N-a) degrés de liberté.
Première méthode
On reprend l'énoncé "Bransfor" :
On demande à des sujets d'écouter un texte dans quatre conditions expérimentales différentes :

Le but visé par Bransford et al. est de montrer l'importance du contexte dans la compréhension et la mémorisation d'un texte. Pour ce faire, ils utilisent quatre groupes expérimentaux:
- Un groupe "sans contexte" entend simplement le texte.
- Le groupe "avec contexte avant" regarde une figure suggérant un contexte approprié pendant qu'il entend le texte.
- Le groupe "avec contexte après" entend le texte puis regarde la figure précédente.
- Le groupe ``avec contexte partiel" regarde une figure suggérant un contexte inapproprié pendant qu'il entend le texte.

A proprement parler cette étude comprend un groupe expérimental (le groupe 2: contexte pendant) et trois groupes contrôles (les groupes 1, 3 et 4). Les groupes contrôles doivent permettre d'éliminer des explications concurrentes (en particulier, effet facilitateur sur la mémoire de l'imagerie, de l'aspect concret du matériel, etc.). L'expérimentateur s'attend, donc, à observer une performance pour le groupe 2 supérieure aux trois autres groupes.

Il choisit de mesurer le comportement des sujets par la variable dépendante "nombre d'idées correctement rappelées".

GR1GR2GR3GR435253944285344453914
Définissez un nouveau classeur Statistica et insérez une nouvelle feuille de données dans ce classeur. Saisissez les données selon un plan d'expérience S (c'est-à-dire, définissez une variable "Groupe" et une variable "Variable dépendante" ou "VD"). Enregistrez ensuite le classeur sous le nom Bransfor.stw.

Utilisez ensuite le menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur.
Sélectionnez l'onglet "Tables individuelles" et indiquez les variables utilisées par l'analyse :



Sélectionnez l'onglet "Base" ou l'onglet "ANOVA et Tests" et cliquez sur le bouton "Analyse de variance".
On obtient le résultat suivant :

 EMBED STATISTICA.Spreadsheet \s 

Tous les éléments du tableau d'analyse de variance sont présents, mais la disposition n'est pas celle qui est traditionnellement utilisée.

On peut aussi illustrer la situation à l'aide d'un graphique. Par exemple, sous l'onglet "Stats Descriptives", on pourra utiliser le bouton "Boîtes à moustaches catégorisées" et l'item "Moyenne/Erreur-Type/1.96*Erreur-Type" :

On obtient ainsi le graphique suivant :
 EMBED STATISTICA.Graph \s 

Deuxième méthode
On utilise toujours le classeur Bransford.stw.

Utilisez le menu Statistiques - ANOVA, puis "ANOVA à un facteur" et "Spécifications rapides".
Dans le dialogue suivant, indiquez la variable dépendante et le facteur (facteur catégoriel dans la terminologie de Statistica), cliquez ensuite sur le bouton OK, puis le bouton "Tous les effets". Vous devriez obtenir le résultat suivant :

 EMBED STATISTICA.Spreadsheet \s 

Lecture du résultat :

On reconnaît les colonnes "somme de carrés", "carrés moyens", "degrés de liberté" et F. Cependant, la présentation du résultat diffère de celle adoptée en cours (et utilisée par la plupart des autres logiciels). Dans la première ligne du tableau, la somme des carrés est égale à :
(moyenne générale)2 x nombre d'observations
Le test de cette première ligne correspond à l'hypothèse nulle : EMBED Equation.3 , où  EMBED Equation.3 désigne la moyenne de la VD, avant prise en compte de l'effet du facteur "Groupe".
Les deux lignes suivantes correspondent aux lignes "Inter-groupes" et "Intra-groupes" du tableau d'ANOVA classique. Enfin, Statistica n'affiche pas de ligne de synthèse. Il nous appartient donc de la reconstituer pour obtenir le tableau habituel :

Sources de variationSomme des CarrésddlCarrés MoyensFpInter-groupes50,9500316,98337,22700,278%Intra-groupes37,6000162,3500Total88,5500162,3500

Troisième méthode
Tous les traitements d'analyse de variance que nous nous proposons d'étudier sont également disponibles dans le module Modèles linéaires / non linéaires avancés - Modèle linéaire général. Bien que l'interface soit un peu plus complexe, il peut être intéressant d'utiliser le même item de menu pour tous les traitements d'ANOVA que nous nous proposons d'étudier.

On utilise toujours le classeur Bransford.stw.

Utilisez le menu Statistiques - Modèles linéaires / non linéaires avancés, puis "Modèle linéaire général" et "Modèles linéaires généraux".
Dans le dialogue suivant, indiquez la variable dépendante et le facteur (facteur catégoriel dans la terminologie de Statistica):
 

Cliquez ensuite sur le bouton OK, puis le bouton "Tous les effets". On obtient ainsi le résultat sous une forme identique à celle obtenue avec la méthode 2.
Conditions d'application de l'ANOVA à un facteur
Comme le test de Student, l'ANOVA à un facteur suppose :
- la normalité des distributions parentes pour la variable dépendante dans chacun des niveaux du facteur A ;
- l'homogénéité des variances des distributions parentes.

La normalité des distributions parentes peut être vérifiée à l'aide du menu Graphiques - Graphiques catégorisés - Graphiques de normalité en cochant l'option "Test de Shapiro-Wilk" dans l'onglet "Avancé". Pour les données "Bransford", il est légitime de supposer la normalité des distributions parentes.

La vérification de l'homogénéité des variances peut être faite dans chacun des dialogues correspondant aux trois méthodes envisagées.

Lorsque vous utilisez le menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur, activez l'onglet "ANOVA et Tests", puis cliquez sur le bouton "Test de Levene" ou le bouton "Test de Brown et Forsythe".

On voit que le test de Levene indique plutôt des variances hétérogènes, alors que celui de Brown et Forsythe produit un résultat satisfaisant :

 EMBED STATISTICA.Spreadsheet \s 

 EMBED STATISTICA.Spreadsheet \s 

Avec la deuxième méthode (Statistiques - ANOVA - ANOVA à un facteur), on peut, à partir de la fenêtre de dialogue "Résultats", cliquer sur le bouton "Autres résultats" puis activer l'onglet "Hypothèses" et en fin cliquer sur l'un des boutons "C de Cochran, Hartley, Bartlett" ou "Test de Levene" :

 EMBED PBrush 

La procédure est identique pour la troisième méthode (modèle linéaire général).
Tests post hoc après une ANOVA à un facteur
L'ANOVA précédente permet de conclure qu'il existe au moins une différence significative entre les moyennes des 4 groupes, mais n'indique pas quelles sont les paires de groupes pour lesquelles ces différences de moyennes sont significatives. Différents tests, appelés tests post hoc, ont été proposés pour étudier cette question.

Le test LSD de Fisher
LSD : least significant difference
Le test LSD pour une ANOVA réalisée à partir du menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur
On reprend le menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur. en indiquant comme précédemment VD comme variable dépendante et Groupe comme variable classement.
Utilisez l'onglet ANOVA (tables individuelles) puis l'onglet "Tests post-hoc".


Le bouton "Test LSD ou comparaisons planifiées" produit le résultat suivant :

 EMBED STATISTICA.Spreadsheet \s 

Statistica a effectué le test pour chacune des paires de groupes et nous indique le niveau de significativité obtenu dans chaque cas. On voit que, selon ce test, la moyenne observée dans le groupe 2 est significativement différente de celles observées dans chacun des autres groupes, et qu'il s'agit là des seules différences significatives au seuil de 5%.

Le test LSD pour une ANOVA réalisée à partir du menu Statistiques - ANOVA
Utilisez le menu Statistiques - ANOVA, puis "ANOVA à un facteur" et "Spécifications rapides".
Dans le dialogue suivant, indiquez la variable dépendante et le facteur (facteur catégoriel dans la terminologie de Statistica), cliquez sur le bouton OK puis sur le bouton "Autres résultats". Activez ensuite l'onglet "Post-hoc" :

Le bouton "LSD de Fisher" conduit au résultat suivant, qui s'interprète de la même façon que dans le cas précédent :
 EMBED STATISTICA.Spreadsheet \s 

Les manipulations et le résultat sont identiques lorsqu'on utilise le module "Modèles linéaires/non linéaires avancés".

On sait que le test LSD de Fisher est peu conservateur (risque important de commettre une erreur de type I, c'est-à-dire de conclure sur une différence entre deux groupes, alors que cette différence n'existe pas réellement). On peut donc conclure à l'absence de différences significatives entre les groupes 1, 3 et 4, mais il est préférable de réaliser un autre test pour comparer le groupe 2 aux autres groupes.

Le test de Bonferroni-Dunn
Ce test n'est pas proposé dans le menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur. En revanche, on peut utiliser le menu Statistiques - ANOVA, puis "ANOVA à un facteur" et "Spécifications rapides", ou le module "Modèles linéaires/non linéaires avancés" comme précédemment. Il suffit de cliquer sur le bouton "Bonferroni" de l'onglet "Post-hoc" On obtient comme résultat :
 EMBED STATISTICA.Spreadsheet \s 
On remarque que les niveaux de significativité indiqués sont ceux du test LSD de Fisher, multipliés par 6, c'est-à-dire par le nombre de paires de groupes, avec le maximum à 1. Du point de vue de ce test, la différence des moyennes des groupes 2 et 4 n'est plus significative au seuil de 5%.

Le test de Bonferroni-Dunn est conservateur mais peu puissant (le risque de ne pas mettre en évidence une différence qui existe est élevé). On conclut donc à des différences significatives entre le groupe 2 d'une part et les groupes 1 et 3 d'autre part. Pour la comparaison du groupe 2 au groupe 4, on peut départager les deux tests précédents à l'aide d'un test HSD de Tukey.

Le test HSD de Tukey
HSD : honestly significant difference

Les deux menus étudiés précédemment proposent ce test, avec des résultats identiques. On obtient alors :
 EMBED STATISTICA.Spreadsheet \s 

Pour ce test, les moyennes des groupes 2 et 4 apparaissent significativement différentes au seuil de 5%. La différence entre ces deux groupes semble donc se confirmer.

Remarques.
1) Pour quelques éléments plus théoriques sur le test de Tukey, voir le paragraphe 12.2.
2) Le test de Tukey proprement dit s'applique à des groupes équilibrés. Pour des groupes déséquilibrés, pensez à utiliser les boutons "Test HSD de Tukey pour N différents" ou "HSD N différents".

Le test du Dunnett
Le test de Dunnett s'applique aux cas où il s'agit de comparer des groupes expérimentaux à un groupe témoin. Il peut éventuellement être appliqué dans le cas "Bransford", à condition d'inverser les termes du vocabulaire : nous avons ici un groupe expérimental (le groupe 2) et trois groupes témoins.

Ce test n'est pas disponible sous le menu Statistiques - Statistiques élémentaires - Décompositions et ANOVA à un facteur. Utilisez comme précédemment le menu Statistiques - ANOVA et le bouton "Autres résultats". On obtient le dialogue suivant, dans lequel on indique quel est le groupe contrôle (ici "2") et le type de test désiré (unilatéral à gauche, à droite ou bilatéral) :


qui conduit au résultat :

 EMBED STATISTICA.Spreadsheet \s 

On peut remarquer que ce test est l'un des rares tests où Statistica propose aussi bien un test bilatéral qu'un test unilatéral. En effet, il est utilisé dans des situations où l'hypothèse de recherche est clairement orientée.
Traitement d'un plan S*A. Plan à mesures répétées
Dans un plan S*A, ou plan à mesures répétées, un groupe de sujets a été soumis aux différents niveaux d'un facteur A (situation de groupes appareillés). On souhaite tester l'effet des différents niveaux du facteur A sur le comportement des sujets, évalué à l'aide d'une variable dépendante X. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Effet "sujet" + Résidu aléatoire.

La forme générale du tableau d'analyse de variance correspondant est la suivante :

Sources de variationSomme des CarrésddlCarrés MoyensFpFacteur A EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Facteur S EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 Résidu AS EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 Total EMBED Equation.3  EMBED Equation.3 
La statistique F suit une loi de Fisher Snedecor à (a-1) et (a-1)(n-1) degrés de liberté.

Première méthode
Enoncé du cas:
Dans une expérimentation sur l'inhibition proactive, des sujets apprennent une liste de dix paires de mots, puis doivent se rappeler ces paires deux jours plus tard. Après le rappel, les sujets doivent apprendre une deuxième liste de dix paires dont ils devront se rappeler deux jours plus tard, le rappel de la deuxième liste est suivie de l'apprentissage d'une troisième, etc., jusqu'à la sixième liste. La variable indépendante sera la position ordinale de la liste (e.g., première, seconde, ... , sixième).

La variable dépendante sera le nombre de paires correctement rappelées. Les auteurs de l'expérience prédisent que le rappel se détériorera à mesure que l'on progresse dans la position ordinale (prédiction qui traduit simplement l'effet de l'inhibition proactive).


Ouvrez le classeur Inhibit.stw et rendez active la feuille Inhibit1.

Les données y sont saisies selon la logique "plan d'expérience" : une ligne par observation, les sujets sont considérés comme un facteur, au même titre que "position" :

SujetPositionNb Mots1s11172s21143s3117...9s121310s221811s3216...
Il s'agit là d'une expérience conduite selon un plan S*A, où A est le facteur "position" et S le facteur "sujet".
Pour traiter les données à l'aide de Statistica :
Utilisez le menu Statistiques - ANOVA.
Choisissez l'item ANOVA - Effets principaux .
Spécifiez Nb Mots comme variable dépendante, Sujet et Position comme prédicteurs.
Le résultat fourni par Statistica est le suivant :

 EMBED STATISTICA.Spreadsheet \s 

Ce résultat permet de recomposer le tableau d'analyse de variance attendu :

Analyse de variance pour Nb mots
Source DL SC CM F P
Position 5 146,85 29,37 10,32 0,000
Sujet 7 52,48 7,50
Erreur 35 99,65 2,85
Total 47 298,98

Il peut également être intéressant de produire un graphique montrant les moyennes observées pour chacun des niveaux du facteur Position.

Dans la fenêtre de dialogue "Résultats", cliquez sur le bouton "Tous effets/Graphs" puis sélectionnez la ligne "Position". Vous devriez obtenir le graphique suivant :
 EMBED STATISTICA.Graph \s 
On pourra, comme dans le cas d'une ANOVA à un facteur, réaliser des tests post hoc : LSD de Fisher, Bonferroni-Dunn, HSD de Tukey, etc. Lorsqu'on utilise des données structurées selon cette méthode, les deux facteurs de variation "Sujet" et "Position" peuvent être étudiés. Evidemment, seul le facteur "Position" présente un intérêt.

La conclusion sera ici :
- La condition 1 est significativement différente des conditions 3 à 6.
- La condition 2 est significativement différente des conditions 4 à 6.
- Il n'existe pas de différence significative entre les conditions 3, 4, 5 et 6.
Deuxième méthode
Une autre façon de saisir les données est celle figurant dans la feuille Inhibit2 :

SujetNb Mots-1Nb Mots-2Nb Mots-3Nb Mots-4Nb Mots-5Nb Mots-61s11713121211112s21418131811123s31716131115144s41816111012105s51712131011136s61613131111117s71412101010108s8161715111311
Chaque ligne correspond alors à un individu statistique (sujet). Autrement dit, les six scores relatifs à un même sujet se trouvent sur une même ligne.
Statistica peut également réaliser l'ANOVA sur des données structurées de cette façon.

Rendez active la feuille Inhibit2.
Utilisez le menu Statistiques - ANOVA, puis l'item ANOVA - Mesures répétées.
Indiquez NB Mots-1 à Nb Mots-6 comme variables dépendantes, et n'indiquez pas de prédicteur catégoriel :



Validez et cliquez ensuite sur le bouton "Effets intra" ; indiquez que les variables Nb Mots-1 à Nb Mots-6 correspondent aux 6 niveaux du facteur POSITION :



Vous devriez obtenir la description suivante des facteurs impliqués dans l'analyse :



Statistica dispose alors le tableau d'analyse de variance de la façon suivante :

 EMBED STATISTICA.Spreadsheet \s 

Comme dans la méthode précédente, l'étude peut être poursuivie à l'aide de tests post hoc. Mais ici, seul POSITION est proposé comme facteur de variation. La conclusion est évidemment la même que précédemment.
Troisième méthode
Données saisies "par observation"
On revient à la feuille Inhibit1. Comme précédemment, utilisons le menu Statistiques - Modèles linéaires / non linéaires avancés, puis "Modèle linéaire général" et "Modèles linéaires généraux".

Avec les données structurées "par observation" (feuille Inhibit1 à rendre active), complétez le dialogue "Variables" de la manière suivante:

Cliquez ensuite sur le bouton "Effets Inter":

Cliquez alors sur le bouton radio "Effets personnalisés pour le modèle inter", et utilisez les outils fournis dans la fenêtre de dialogue pour obtenir les spécifications suivantes :


Le résultat s'affiche sous la même forme que dans la méthode 1.
Données saisies "par sujet" :
Activez la feuille Inhibit2. Utilisez le menu Statistiques - Modèles linéaires / non linéaires avancés, puis "Modèle linéaire général" et "Modèles linéaires généraux".

Dans le dialogue suivant, indiquez les variables 2 à 7 comme variables dépendantes et n'indiquez aucun prédicteur catégoriel, ni prédicteur continu.

Cliquez ensuite sur le bouton "Effets Intra" et définissez les 6 variables dépendantes comme niveaux du facteur POSITION :

Le résultat s'affiche sous une forme analogue à celle de la méthode 2.
Conditions d'application. Sphéricité.
Outre les conditions sur la normalité des distributions parentes et sur l'égalité des variances (homoscédasticité des résidus), l'analyse de variance sur un plan à mesures répétées exige une condition d'application supplémentaire appelée sphéricité. Il s'agit en fait de vérifier certaines propriétés de régularité concernant les covariances entre les séries correspondant aux différents niveaux du facteur.

A partir des données saisies "par sujet" (feuille Inhibit2), on peut réaliser un test de sphéricité : utilisez par exemple la feuille Inhibit2 et le menu "Modèle linéaire général". Dans la fenêtre dialogue "GLM - Résultats", cliquez sur "Autres résultats". Activez ensuite l'onglet "Synthèse" puis sur le bouton "Test de sphéricité" :
 EMBED PBrush       EMBED PBrush 
On obtient le résultat suivant :
 EMBED STATISTICA.Spreadsheet \s 

Interprétation du résultat : dans ce test, l'hypothèse H0 correspond au respect de l'hypothèse de sphéricité, tandis que l'hypothèse H1 correspond à un défaut de sphéricité. Le niveau de significativité observé (22,8%) conduit à retenir l'hypothèse H0 : on n'a pas mis en évidence de défaut de sphéricité.

Le test de sphéricité peut également être réalisé à partir du menu ANOVA - Mesures répétées.
Exercice

Dans une étude sur l'effet du bruit sur la discrimination perceptive, on utilise six sujets. On mesure pour chaque sujet le nombre d'erreurs commises dans une tâche de discrimination perceptive. Les sujets sont soumis à trois conditions. Dans la première, les sujets accomplissent la tâche en l'absence de bruit; dans la seconde, le bruit est présenté de façon intermittente (i.e., bruits d'avions) ; dans la dernière, le bruit est présenté de façon continue (bruits de "marteau piqueur" ) On obtient les résultats suivants

SujetsAbsence de bruitBruit IntermittentBruit continu111711912721301261313122118129412311713451261201376116120128
Après avoir identifié la ou les variable(s) indépendante(s), dépendante(s), vous répondrez à la question classique : la variable indépendante influe-t-elle sur les variables dépendantes ?. Réalisez cette étude à l'aide de Statistica et recomposez le tableau d'analyse de variance convenable.

Traitement d'un plan S. Plan factoriel à 2 facteurs
Le plan S, ou plan factoriel, correspond au cas où l'on étudie l'effet de deux facteurs croisés, en utilisant des groupes indépendants de sujets dans chacune des conditions définies par le croisement des deux facteurs. Les sources de variation à prendre en compte sont les facteurs A et B et, éventuellement, l'interaction AB. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Effet de B + Effet d'interaction + Résidu aléatoire.

La forme générale du tableau d'analyse de variance correspondant est la suivante :

Sources de variationSomme des CarrésddlCarrés MoyensFpFacteur A EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Facteur B EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Interaction AB EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Résidu S(AB) EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 Total EMBED Equation.3  EMBED Equation.3 
Trois tests statistiques, correspondant aux trois sources de variation A, B et AB peuvent être effectués. La statistique FA suit une loi de Fisher Snedecor à (a-1) et ab(n-1) degrés de liberté, la statistique FB, une loi de Fisher Snedecor à (b-1) et ab(n-1) degrés de liberté et la statistique FAB une loi de Fisher Snedecor à (a1)(b-1) et ab(n-1) degrés de liberté

Première méthode : le menu ANOVA - Factorielle
Enoncé du cas:
Cet exemple est basé sur des données fictives présentées par Lindeman (1974).
Vous testez la performance de rats d'origines différentes dans un labyrinthe. La tâche du rat est d'apprendre à se rendre directement à l'endroit où de la nourriture a été placée, sans erreurs. Trois lignées de rats sont utilisées. Pour chacune de ces lignées, vous utilisez 4 animaux élevés dans un environnement libre, et 4 animaux élevés dans un environnement restreint. La variable dépendante est le nombre d'erreurs faites par le rat dans son parcours vers la nourriture.

Extrait des données :
ELEVAGELIGNEEERREURS1LIBREBRILLANT26,0002LIBREBRILLANT14,000...17CAGEMIXTE39,000...24CAGEMAUVAIS124,000
Ouvrez le fichier Rats.stw. Identifiez les facteurs de variation et la variable dépendante.
Il s'agit ici d'un plan S4.

Utilisez le menu Statistiques - ANOVA.
Choisissez l'item ANOVA - Factorielle.
Spécifiez Erreurs comme variable dépendante, Elevage et Lignée comme prédicteurs.
Le résultat fourni par Statistica est le suivant :

 EMBED STATISTICA.Spreadsheet \s 

L'interaction (ici l'absence d'interaction) entre les deux facteurs étudiés peut être illustrée à l'aide d'un graphique :
Affichez la fenêtre de dialogue "Résultats ANOVA" et cliquez sur le bouton "Tous effets:Graphs".
Sélectionnez ensuite la ligne : "Elevage*Lignée"
Vous devriez obtenir le graphique suivant :
 EMBED STATISTICA.Graph \s 

Deuxième méthode : le module "Modèle linéaire général"
Comme précédemment, utilisons le menu Statistiques - Modèles linéaires / non linéaires avancés, puis "Modèle linéaire général" et "Modèles linéaires généraux".
Compléter le dialogue relatif aux variables comme suit :

Les spécifications de l'étude apparaissent donc ainsi :

Le résultat obtenu est identique au précédent.
Tests post hoc
De la même façon que dans les cas précédemment étudiés, des tests post hoc pourront être faits sur chacun des facteurs de variation pour lesquels la statistique F a conclu sur un effet significatif. On fera donc des tests post hoc sur Elevage et Lignée. On peut également mener les calculs sur l'interaction Elevage x Lignée, mais on se gardera d'interpréter une éventuelle différence significative obtenue en conclusion de l'un des tests, puisque la statistique F a conclu sur l'absence d'interaction. Par exemple, ici, le test LSD de Fisher et le test HSD de Tukey concluent sur une différence significative entre la combinaison Libre-Brillant et la combinaison Cage-Mauvais, mais cette conclusion mérite d'être confirmée par une étude complémentaire.
Exercice
On demande aux sujets de mémoriser des listes comportant 12, 24 ou 48 mots (facteur A, avec trois modalités). Ces mots peuvent se regrouper par paires en catégories (par exemple pomme et orange se regroupent en "fruits"). On demande aux sujets d'apprendre les mots, et on leur montre le nom des catégories à ce moment en leur précisant qu'ils n'ont pas à apprendre le nom de ces catégories. Au moment de l'épreuve de rappel qui a lieu immédiatement après l'apprentissage on crée deux conditions. Dans un cas, on présente aux sujets la liste des catégories. Dans l'autre cas, on ne leur présente pas cette liste (facteur B présentation de la liste des catégories au moment de l'apprentissage versus absence de présentation). Dans cette reprise d'une expérience de Tulving et Pearlstone (1966), la variable dépendante sera le nombre de mots rappelés. En examinant les deux variables indépendantes, la première (nombre de mots de la liste) est, clairement, triviale. Il semble superfétatoire de construire une expérimentation pour montrer que plus une liste de mots est longue, plus on peut en retenir. Cette remarque indique que les auteurs de cette expérience s'intéressaient d'emblée à un effet d'interaction.
On interroge dix sujets par condition expérimentale. Voici les résultats

Facteur A : Nombre de mots par listeFacteur Ba1:12a2:24a3:48 10 6 13 15 17 16 8 11 18 13 20 23b1 12 10 19 9 22 19 8 9 13 8 13 20 7 9 8 14 21 19 12 10 12 13 31 29 12 12 20 12 30 32b2 7 10 19 13 26 24 9 7 14 15 29 24 9 12 16 6 28 27
Etudiez à l'aide d'une analyse de variance quels sont les facteurs dont l'effet est significatif. Recomposez le tableau d'analyse de variance et illustrez la situation proposée à l'aide d'un graphe d'interaction et commentez-le.

Traitement d'un plan S*B. Plan à mesures partiellement répétées
Le plan S*B correspond au cas où des groupes indépendants de sujets (facteur "groupe" A, emboîté dans les sujets) ont été observés dans deux ou plusieurs conditions, définies par les niveaux du facteur B, chaque sujet passant par tous les niveaux du facteur B. Un tel plan est qualifié de "plan à mesures partiellement répétées".
Les sources de variation à prendre en compte sont les facteurs A et B et, éventuellement, l'interaction AB. Le modèle de score est ici :

Score = Moyenne Générale + Effet de A + Effet "sujet" + Effet de B + Interaction AB + Résidu aléatoire.

La forme générale du tableau d'analyse de variance correspondant est la suivante :

Sources de variationSomme des CarrésddlCarrés MoyensFpEntre les sujetsFacteur A EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Facteur S(A) EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 Dans les sujetsFacteur B EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Interaction AB EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 ...........Résidu BS(A) EMBED Equation.3  EMBED Equation.3  EMBED Equation.3 Total EMBED Equation.3  EMBED Equation.3 
Pour un plan S*B, avec A et B facteurs fixes, le rapport F relatif au facteur A se calcule en utilisant comme dénominateur le carré moyen relatif à S(A), tandis que les rapports F relatifs à B et AB utilisent le carré moyen du résidu.
Trois tests statistiques, correspondant aux trois sources de variation A, B et AB peuvent être effectués. La statistique FA suit une loi de Fisher Snedecor à (a-1) et a(n-1) degrés de liberté, la statistique FB, une loi de Fisher Snedecor à (b-1) et a(b-1)(n-1) degrés de liberté et la statistique FAB une loi de Fisher Snedecor à (a-1)(b-1) et a(b-1)(n-1) degrés de liberté.


Première méthode : données saisies "par sujet"

Enoncé du cas:
En 1986, King a étudié l'activité motrice chez le rat après injection d'un médicament appelé midazolam. La première injection du médicament entraîne généralement une diminution nette de l'activité motrice. Mais une certaine tolérance se développe rapidement. King souhaitait savoir si cette tolérance acquise pouvait s'expliquer sur la base d'une tolérance conditionnée.
Il a utilisé trois groupes et n'a recueilli les données (présentées dans le tableau ci-dessous) que le dernier jour, jour du test. Durant le pré-test, deux groupes d'animaux ont reçu à plusieurs reprises des injections de midazolam réparties sur plusieurs jours, tandis que le groupe témoin recevait des injections d'une solution saline physiologique.

Le jour du test, un groupe (le groupe "même") a reçu une injection de midazolam dans le même environnement qu'auparavant. Le groupe "différent" a également reçu une injection de midazolam, mais dans un environnement différent. Enfin, le groupe témoin a reçu, pour la première fois, une injection de midazolam. Ce groupe témoin devrait donc manifester la réaction initiale classique au médicament (comportement ambulatoire réduit), tandis que le groupe "même" devrait présenter l'effet normal de tolérance. Par contre, si King a raison, le groupe "différent" devrait réagir de la même façon que le groupe témoin; en effet, ces animaux allaient cette fois recevoir l'injection dans un environnement différent, et les éléments nécessaires pour susciter une tolérance conditionnée ne seraient pas présents. La variable dépendante du tableau ci-dessous est une mesure du comportement ambulatoire, en unités arbitraires.

Comme le médicament se métabolise sur une période d'environ 1 heure, King a enregistré ses données par blocs (ou intervalles) de 5 minutes. Le tableau donne les valeurs observées pour les 6 premiers blocs de données.


Ouvrez le fichier King.stw et rendez active la feuille King1.

Le plan d'expériences utilisé par King est du type S8*B6. Avec les notations utilisées dans la feuille de données, il s'agit du plan Sujet8*Intervalle6.

Dans la feuille King1, les données ont été saisies "par sujet" :
SujetGroupeAmb1Amb2Amb3Amb4Amb5Amb61S1Témoin150447159132742S2Témoin335270156160118230...9S9Même34617517719223914010S10Même42632923676102232...
Utilisez le menu Statistiques - ANOVA.
Choisissez l'item ANOVA - Mesures répétées.
Indiquez Amb1 à Amb6 comme variables dépendantes et Groupe comme prédicteur catégoriel.



Cliquez ensuite sur le bouton "Effets intra" et indiquez que les variables Amb1 à Amb6 correspondent aux 6 niveaux du facteur Intervalle :



N.B. Le facteur sujet est spécifié, de façon implicite, par la disposition des données : les mesures d'une même ligne sont relatives à un même sujet.
On obtient le résultat suivant :

 EMBED STATISTICA.Spreadsheet \s 

qui correspond au tableau d'analyse de variance ci-dessous:

Analyse de la variance pour Ambulato, en utilisant la SC ajustée pour les tests

Source DL SC CM F P
Entre les sujets
Groupe 2 285815 142908 7.80 0.003
Sujet(Groupe) 21 384722 18320
Dans les sujets
Interval 5 399737 79947 29.85 0.000
Groupe*Interval 10 80820 8082 3.02 0.002
Erreur 105 281199 2678
Total 143 1432293

Deuxième méthode : données "par observation"
La feuille King2 contient les mêmes données, mais saisies selon la logique "plan d'expérience" : chaque facteur est représenté par une variable, et chaque ligne correspond à une observation.

Voici un extrait des données :

 EMBED STATISTICA.Spreadsheet \s 

Utilisez le menu : Statistiques - Modèles Linéaires/Non linéaires avancés - Décomposition de la Variance.
Indiquez "Ambulatoire" comme variable dépendante, Sujet comme facteur aléatoire, Groupe et Intervalle comme facteurs fixes:



Cliquez sur le bouton OK, puis sur le bouton "Synthèse : Décomposition de la variance.
Vous obtenez le résultat suivant :

 EMBED STATISTICA.Spreadsheet \s 

En remettant les lignes dans le bon ordre, on retrouve ainsi le tableau d'analyse de variance.

Troisième méthode : le module "Modèle linéaire général"
Données saisies "par observation"
On utilise la feuille de données King2. et le menu Statistiques - Modèles linéaires / non linéaires avancés, puis "Modèle linéaire général" et "Modèles linéaires généraux".
Complétez le dialogue relatif aux variables comme suit :

Cliquez ensuite sur le bouton "Effets Intra", puis sur le bouton radio "Effets personnalisés pour le modèle inter". Utilisez le bouton "Imbric. hiérarc." pour ajouter les effets Groupe et Sujet(Groupe). Ajoutez ensuite l'effet "Intervalle" et enfin, utilisez le bouton "Croisé complet pour ajouter l'effet d'interaction Groupe * Intervalle.

Validez ce dialogue. On obtient ainsi la spécification des variables suivante :


Important : Activez ensuite l'onglet Options et spécifiez Sujet comme facteur aléatoire :



Statistica émet un message d'avertissement puis produit le résultat suivant :

 EMBED STATISTICA.Spreadsheet \s 

Données saisies "par sujet"
On utilise évidemment la feuille de données King1. et le menu Statistiques - Modèles linéaires / non linéaires avancés, puis "Modèle linéaire général" et "Modèles linéaires généraux".
Complétez le dialogue relatif aux variables comme suit :

Cliquez ensuite sur le bouton "Effets Intra" pour indiquer que les variables dépendantes Amb1 à Amb6 correspondent aux 6 niveaux du facteur "Intervalle :

Tests post hoc
De la même façon que dans les cas précédemment étudiés, des tests post hoc pourront être faits sur chacun des facteurs de variation pour lesquels la statistique F a conclu sur un effet significatif. On fera donc des tests post hoc sur Groupe, Intervalle et sur l'interaction Groupe x Intervalle. Il semblerait que ce soit essentiellement l'intervalle 1 qui diffère des autres. L'interaction, quant à elle, produit des résultats assez difficiles à interpréter.

Exercice
Dans une reprise d'une expérience de Conrad (1971), on veut mettre en évidence l'hypothèse de recherche suivante "les enfants jeunes n'utilisent pas un codage phonologique en mémoire à court terme". Pour ce faire, on sélectionne cinq enfants de 5 ans et 5 enfants de 12 ans (Variable A, avec deux modalités). On montre à chaque enfant un certain nombre de paires d'images représentant des objets dont on s'est assuré auparavant qu'ils sont nommés d'une seule manière par les enfants. On montre les images aux enfants. Puis on retourne les images (les enfants ne voient plus que le dos des images). Ensuite, on donne aux enfants une paire d'images identiques à celles retournées. Enfin, on leur demande de placer ces nouvelles images comme les images retournées sur la table. Pour la moitié des paires d'images les noms des objets se ressemblent (e.g., noix et doigt). Pour l'autre moitié, les noms des objets ne se ressemblent pas (e.g., maison et cheval). Conrad prédit que les enfants les plus vieux réussiront dans l'ensemble mieux que les enfants les plus jeunes, mais également que les enfants les plus vieux utiliseront un codage phonologique comme mnémonique (i.e., "la parole intérieure"). De ce fait, les enfants les plus vieux devront commettre plus d'erreurs lorsque les noms se ressemblent acoustiquement que lorsque les noms diffèrent. On présente à chaque enfant cinquante paires d'images correspondant à la modalité b1 (dissemblance acoustique), et cinquante paires d'images correspondant à la modalité b2 (ressemblance acoustique); la variable dépendante choisie est le nombre de paires d'images correctement reconstituées. L'ordre de présentation est "aléatorisé" pour chaque passation (Pourquoi cette précaution ?).

Essayer de traduire l'hypothèse de recherche en prédiction sur les sources de variation de l'analyse de variance.
Vous avez dû conclure que, d'une part, on s'attend à un effet principal de l'âge (qui est trivial), et, d'autre part, à un effet d'interaction c'est le point d'importance, ou si vous préférez, le point crucial de la théorie. On retrouve, ici, le rôle essentiel de l'interaction "comme test de théorie".

a1b1a1b2s11514s22320s31211s41617s51413a2b1a2b2s64033s73823s83121s93626s103022
Etudiez ces données à l'aide d'une analyse de variance, recomposez le tableau d'analyse de variance sous sa forme classique et commentez les résultats obtenus. Illustrez l'étude à l'aide d'un graphe d'interaction.


Contrastes orthogonaux et tests post hoc
L'analyse de variance montre que, globalement, les différentes moyennes sont significativement différentes. Mais elle n'indique pas quelles sont les différences significatives qui existent dans cet ensemble de moyennes. les résultats relatifs aux moyennes prises deux à deux. Différentes méthodes ont été proposées pour répondre à cette interrogation.
Contrastes orthogonaux
On reprend les données Bransford (fichier Bransford.stw). L'étude peut être poursuivie à l'aide de la méthode des contrastes orthogonaux.

La première étape consiste opposer le groupe 2 aux trois autres groupes en testant l'hypothèse nulle :
 EMBED Equation.3 

Refaites le calcul de l'ANOVA sur les données Bransford, à l'aide du menu Statistiques - ANOVA - ANOVA Factorielle Puis, reprenez l'analyse et affichez l'onglet "Comps". Cliquez sur le bouton "Contrastes de moyennes MC" et entrez les coefficients suivants :



Cliquez ensuite sur le bouton OK, puis le bouton Calculer.
On obtient les deux tableaux de résultats suivants (N.B. le premier tableau n'est affiché que dans un rapport. Demandez donc à ce que les résultats du traitement soient copiés dans un rapport) :

 EMBED STATISTICA.Spreadsheet \s 

 EMBED STATISTICA.Spreadsheet \s 

Détails des calculs : voir la fiche de TD de statistiques.

Le F de Fisher associé à ce contraste vaut 19.92. Les degrés de liberté sont 1 et 16. Le résultat est donc significatif d'un comportement du groupe 2 différent de celui des autres groupes.

La méthode peut être poursuivie en opposant le groupe 4 aux groupes 1 et 3 (coefficients appliqués aux quatre moyennes : 1, 0, 1, -2) puis en opposant les groupes 1 et 3 (coefficients appliqués : 1, 0, -1, 0).

Statistica permet de réaliser les trois calculs en une seule étape. Reprenez la fenêtre de dialogue"Contrastes de moyennes MC" et complétez-la comme suit :



On obtient alors les résultats suivants :

 EMBED STATISTICA.Spreadsheet \s 

 EMBED STATISTICA.Spreadsheet \s 

Statistica calcule un t de Student pour chacun des contrastes, et un F de Fisher pour l'ensemble des trois contrastes. On voit que seul le premier contraste conduit à un résultat significatif.

En fait, Statistica permet de ne rentrer que 1, 0 ou -1 comme coefficients. Il se charge de calculer lui-même les pondérations nécessaires. En revanche, il permet de rentrer des jeux de coefficients qui ne correspondent pas à des contrastes orthogonaux.

Pourquoi s'agit-il de contrastes orthogonaux ?

Réponse : Les "vecteurs" associés aux coefficients des trois contrastes, à savoir V1=(-1, 3, -1, -1), V2=(1, 0, 1, -2), V3=(1, 0, -1, 0) sont deux à deux orthogonaux ce qui garantit l'indépendance des résultats des trois tests.
Test de Tukey pour une ANOVA à 1 facteur
Principe

On dispose de données recueillies selon un plan S. On a réalisé une ANOVA qui conclut à une différence entre les groupes. On souhaite répondre à la question suivante : "quelles sont les paires de groupes pour lesquelles les différences sont significatives ?"

Notations :
* r : nombre de groupes
* n : effectif de chaque groupe (N.B. la méthode fonctionne aussi pour des groupes non équilibrés).

Tableau d'ANOVA :
SCddlCMFEntre groupesSCGr-1CMGFRésiduSCS(G)r(n-1)CMS(G)TotalSCTrn-1
Pour chaque groupe, l'erreur standard estimée est :
 EMBED Equation.3 
On ordonne les moyennes par ordre décroissant. Soient  EMBED Equation.3  et  EMBED Equation.3  la plus grande et la plus petite valeur de cet ensemble de moyennes. Lorsque r > 2, la quantité :
 EMBED Equation.3 
(ou plutôt la quantité  EMBED Equation.3 ) ne suit pas une loi de Student, car les deux moyennes prises en compte ne sont pas choisies au hasard. On montre que cette quantité suit la loi des écarts studentisés qui prend comme paramètres le nombre de groupes r et le nombre de ddl (celui figurant dans la ligne "résidu" du tableau d'ANOVA).

Dans le test de Newman-Keuls, on calcule la quantité Q pour deux moyennes quelconques, et on considère la loi des écarts studentisés avec comme paramètre r, le nombre "d'échelons" : deux moyennes adjacentes sont distantes de deux échelons, deux moyennes séparées par une 3è sont distantes de 3 échelons, etc. En fait, dès que le nombre de paires augmente, le risque de commettre une erreur de type I dépasse ainsi largement le seuil að fixé par l'expérimentateur.

Le test de Tukey, ou test de la différence franchement significative (HSD : honestly significative difference) consiste à calculer l'expression Q pour toutes les différences de moyennes, en conservant comme loi de distribution, celle de paramètres r et ddl. Autrement dit, on calcule les quantités :
 EMBED Equation.3 
et on conserve pour Q la distribution des étendues studentisées de paramètres r et ddl.
Si QObs > QCrit, on conclut à une différence significative entre les deux moyennes constituant la paire.

Le test de Tukey avec Statistica
On reprend le classeur Bransford.stw :

On utilise le menu "Modèle linéaire général", puis les traitements : "Synthèse - Tous les effets" et "Autres résultats - Post Hoc - HSD de Tukey". On obtient alors les résultats suivants :

Test HSD de Tukey ; variable VD (Données Bransford dans Bransford-correction.stw)
Probabilités Approximatives des Tests Post Hoc
Erreur : MC Inter = 2,3500, dl = 16,000
Groupe{1}{2}{3}{4}3,00007,00003,20004,20001GR10,00410,99680,61322GR20,00410,00610,04763GR30,99680,00610,73414GR40,61320,04760,7341
Autrement dit, Statistica nous indique les niveaux de significativité des différences entre les moyennes des quatre groupes, en utilisant la distribution des écarts studentisés. Ici, les seules différences significatives sont celles du groupe 2 avec les autres groupes.

Estimation de l'intensité de l'effet
Une autre grandeur intéressante est le coefficient (souvent noté (2, Statistica le note R2) d'estimation de l'intensité de l'effet de la variable indépendante. Dans le cas d'une analyse de variance à un facteur, il est défini par : R2 = SCinter / SCtotal.

Affichez l'onglet "Synthèse" et cliquez sur le bouton "R modèle complet". On obtient :

 EMBED STATISTICA.Spreadsheet \s 

Signification : 58% de la variance de la variable dépendante est expliquée par l'effet de la variable indépendante (les différentes conditions expérimentales).

R2 est aussi le carré d'un coefficient de corrélation. Il peut en effet être obtenu comme coefficient de la corrélation entre l'ensemble des données observées d'une part, et la série de données obtenue en remplaçant chaque observation par la moyenne de son groupe d'autre part.
Travail à rendre par courrier électronique
Réalisez les études demandées dans les 3 exercices ci-dessous. Faites parvenir votre travail (classeur Statistica contenant les traitements demandés, commentaire saisi dans un rapport Statistica ou un fichier Word) par mail à votre enseignant (adresse : Francois.Carpentier@univ-brest.fr).

Exercice 1
Une psychologue s'intéressait aux processus liés aux changements d'opinion. Elle avait demandé à 9 sujets d'estimer sur une échelle allant de 1 (opinion pas du tout favorable) à 7 (opinion très favorable) leur opinion concernant la popularité du gouvernement français avant le déclenchement des hostilités dans la première guerre du golfe, pendant les hostilités et après la fin de celles-ci. Les résultats pour les 9 sujets furent les suivants :

SujetsOpinion avantOpinion pendantOpinion après124324673112436555546111725181519243
1) Réalisez un test de sphéricité sur les données proposées. Interprétez le résultat fourni par Statistica.

2) On souhaite étudier si les opinions sont significativement différentes selon la période considérée. Réalisez cette étude à l'aide de Statistica et recomposez le tableau d'analyse de variance convenable.

3) Compléter l'étude précédente à l'aide de tests post hoc convenablement choisis.
Exercice 2
Un psychologue s'intéresse à la relation entre le sexe (variable X), le statut socio-économique (variable C) et le "locus of control" perçu. Il a pris 8 adultes de chaque combinaison sexe - statut socio-économique et leur a administré une échelle portant sur le "locus of control" ; un score élevé indique que le sujet estime contrôler sa vie quotidienne.

sexeStatut socio-économiqueBasMoyenElevéHo101618Ho121214Ho81917Ho141713Ho101519Ho161115Ho151422Ho131020Fe81412Fe101018Fe71314Fe9921Fe121719Fe51517Fe81213Fe7816
1) Pour chacun des six groupes obtenus en croisant le sexe et le statut socio-économique, étudiez la normalité de la distribution parente à l'aide d'un graphique et d'un test de Shapiro-Wilk. Commentez les résultats obtenus.

2) Etudiez, globalement, l'homogénéité des variances dans les 6 groupes.

3) Réalisez une analyse de variance sous Statistica afin de déterminer s'il existe un effet significatif de chacun des facteurs X et C, ainsi que de l'interaction XxC. Commentez les résultats obtenus.

4) Compléter l'étude précédente à l'aide de tests post hoc convenablement choisis.
Exercice 3
Des psychopédagogues s'intéressent à la manière de motiver des écoliers afin qu'ils obtiennent de meilleures performances en dictée. Pour cela, ils utilisent 12 élèves scolarisés en CE2 qu'ils soumettent à l'expérience suivante : un tiers des élèves reçoit une consigne très sévère promettant de fortes sanctions en cas d'erreurs ; l'autre tiers reçoit une consigne beaucoup plus douce et le troisième tiers ne reçoit aucune consigne particulière. En outre, pour analyser l'effet de la nature de la dictée, tous les enfants subissent trois dictées : une dictée classique, une chanson qu'ils apprécient beaucoup, et un poème qu'ils ont récemment appris. Les psychopédagogues relèvent le nombre de fautes de chaque élève.

SujetConsigneDictée classiqueChansonPoèmeS1sévère14910S218512S312910S41077S5douce645S6583S71068S8734S9aucune1056S101296S11968S12747
1) Réalisez une analyse de variance sous SNb/
k
l
v
w
Š
‹
Œ

Ž

¢
£
¤
¥
¦
§
º
»
¼
½
¾
¿
Ò
Ó
øñíãÞãÐ㻫ÐãÐ㖆ÐãÐãqaÐãÐãL(j\vÛH
h¹}•OJQJUVmHnHujåh¹}•B*EHöÿUhph(jUuÛH
h¹}•OJQJUVmHnHujáh¹}•B*EHúÿUhph(jŠuÛH
h¹}•OJQJUVmHnHujøh¹}•B*EHöÿUhph(juÛH
h¹}•OJQJUVmHnHujh¹}•B*Uhph h¹}•hh¹}•B*hphh¹}•
h¹}•5CJ
h°}ƒ5CJbcdž  ¡ Û .
/
D
U
Y
g
i
k
úøøöøøúøøíííííí $$Ifa$$a$
y‘y“yþþþk
l
v
Ž
¦
¾
F@333
$„^$If]„^a$$If¸kd$$If–FÖֈªÁï
r™°‘.ƒ'áÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
FaöðÓ
Ô
Õ
â
ã
ï
ð
           3 4 5 6 8 : @ A T U ïá×Ò×á×½­á×áטˆá×á×scá×_×á×J(jJuÛH
h¹}•OJQJUVmHnHuh¹}•j*h¹}•B*EHòÿUhph(jfuÛH
h¹}•OJQJUVmHnHuj* h¹}•B*EHúÿUhph(jwÛH
h¹}•OJQJUVmHnHuj%
h¹}•B*EHòÿUhph(j:uÛH
h¹}•OJQJUVmHnHu h¹}•hh¹}•B*hphjh¹}•B*UhphjÎh¹}•B*EHàÿUhph¾
Ö
â
ã
ï
öé0*$If¸kd- $$If–FÖֈªÁï
r™°‘.ƒ'áÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faöð
$„^$If]„^a$ $$Ifa$ï
  7 8 9 : òòòòò9¸kd0$$If–FÖֈªÁï
r™°‘.ƒ'áÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faöð
$„^$If]„^a$: @ X p q r s ùììììì
$„^$If]„^a$$IfU V W X Y l m n o r ÉÚY¨ 
›œ½¾¿À01Z[vwxyÍáéûïá×áײá×®£×®ž®–®Ž®wŽ®o®Ž®`XŽ®ž®žj1h¹}•Uj\TûF
h¹}•OJQJUVjÈ(h¹}•Uj7#h¹}•UjRûF
h¹}•OJQJUVjh¹}•Ujh¹}•U h¹}•>*h¹}•5B*hphh¹}•jh¹}•B*EHúÿUhph(jwÛH
h¹}•OJQJUVmHnHuh¹}•B*hphjh¹}•B*Uhphj(h¹}•B*EHöÿUhph"s t u Ê Û ü [ \ FDDBDDD¸kd$$If–FÖֈªÁï
r™°‘.ƒ'áÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faöð\ 
M
Á
RSÈÉÍÑÕÙýûûûûýýýýýòòòò $$Ifa$ÙÚÜÞà⍄„„„ $$Ifa$qkd $$IfT–”úÖ\âÿп ­œîïîïöÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿ4Ö
aöŠTâãåçé덄„„„ $$Ifa$qkd¶$$IfT–”úÖ\âÿп ­œîïîïöÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿ4Ö
aöŠTëìîðòô„„„„ $$Ifa$qkd`$$IfT–”úÖ\âÿп ­œîïîïöÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿ4Ö
aöŠTôõ÷ùûý„„„„ $$Ifa$qkd
$$IfT–”úÖ\âÿп ­œîïîïöÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿ4Ö
aöŠTýþ„„„„ $$Ifa$qkd´$$IfT–”úÖ\âÿп ­œîïîïöÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿ4Ö
aöŠT?@ª  yš›ÁÂM‹‹‹‹‹‹†‹‹‹‹†‹‹$a$qkd^$$IfT–”úÖ\âÿп ­œîïîïöÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿÖÿÿÿÿ4Ö
aöŠTMN02Zz{Œ»¼
 12HIbŽTLMbsw…‡‰ýýøýøýöýýýýýøýóýýøýýýêêêêêê $$Ifa$$$a$û  -./01ItuÎÏâãäåêëþÿMÚÜõ÷ ‚Å·ï÷.²³´µT„…fü÷üïüàØïüÓüÊüïü»±ïüïü¢˜ïüŽüŽü‰ü÷ü÷ü÷ü÷üüyüuüuhJ'jüph¹}•Uj¯hh¹}•U h¹}•hh¹}•B*hphjþbh¹}•EHöÿUjžr E
h¹}•OJQJUVjî`h¹}•EHöÿUjÙq E
h¹}•OJQJUVh¹}•H*OJQJ h¹}•5jÓZh¹}•UjLn E
h¹}•OJQJUVjh¹}•U h¹}•>*h¹}•.‰Š˜ ¢ªF@333
$„^$If]„^a$$If¸kdÏd$$If–FÖֈª•á¸
ëë.ÞRáÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faö𪱸¹ÇÏòò93ò$If¸kdÇe$$If–FÖֈª•á¸
ëë.ÞRáÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faöð
$„^$If]„^a$ÏÒÙÚÛÜòòòò9¸kd¿f$$If–FÖֈª•á¸
ëë.ÞRáÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faöð
$„^$If]„^a$Üâêíôõöùììììì
$„^$If]„^a$$Ifö÷øù uv¥FDDBDDD¸kd·g$$If–FÖֈª•á¸
ëë.ÞRáÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faöð¥¦1²¶·T…¾+ef– — !!""—"˜"¾"¿"å"æ"$$ýýýøýýóîééîîîîîîîîîáááîîî$a$gd¤.vgdJ'gdJ'gdJ'$a$f˜"™"º"»"¼"½"¾"¿"À"á"â"ã"ä"å")#$$$$!$"$#$$$%$&$v$¡$¢$Ÿ%®%¼%¾%ë%ì%&&&'&«&üôüåÝôüÙÑ;¶ÑüͲͲª¦—ª¦²‹‡Í‡ƒ{ƒ‡ƒ‡ƒ‡nhŸChŸCOJQJ^Jhfm‡hfm‡6hfm‡hÄcJhOq£j؅h3åUj±JL
h3åOJQJUVh3åjh3åUh*hŸCOJQJ^JhŸChŸCOJQJ^JhŸCjô¨h LXUj~KN
h LXOJQJUVjh LXUh LXjþ–h LXUhÄcJ hfm‡>*hfm‡hŸCh LXOJQJ^J(1+¦+Ì+Í+E,F,ã-ä-ÿ-˜/¾/â0ã0\2]2r2˜2™23(3)3Ñ3Ò3Ý364úòúúúúúíèàèèèèÛÖúúÎúúúúú$a$gdª@lgdª@lgdª@l$a$gduLãgduLãgduLã$a$gdäIËgdŸCË+Ì+Í+D,E,y,ä-.&.u.ƒ.„..±.¹.Ë.Ñ.ç.˜/™/º/»/¼/½/X0m0o1[2\2—2˜2™233$3%3&3'3Ò3Ý3à35464ø4ù4üøôðôìèáÙèáèÔèÔèÔèÌè½µÌè±è±è±ªð±¢±“‹¢±ƒ±xthfm‡ huLãhª@lhK*PhK*PhK*P5jÎhª@lUjF–KN
hª@lOJQJUVjhª@lU hª@lhª@lhª@ljÈhuLãUjÓKN
huLãOJQJUVjhuLãU huLã>*h‹huLã>* huLãhuLãhuLãhbG4häIËh‰sŸh,Rh©P±,64ù4ú4
596:6µ7¶7¸7Ò7Ó7ù7ú7Ý89Q:R:œ::ð:ñ:;úúõððððèããÛããËÉÉÄÄÉÉ» $$Ifa$$a$$$„e„›þ^„e`„›þgdKh’$a$gd‹gd‹$a$gd} 2gd·.Ogd·.OgdÄcJù4:6d6³6Ù6í6¶7·7¸7Ó7Ô7õ7ö7÷7ø7ƒ8È8Ü8Ý89ñ:-;.;8;9;L;M;N;O;P;Q;d;e;üøðøðøèüøàøÑÉàøÅÁºµ±§µ§™§„t™§™§_(jŠuÛH
h¹}•OJQJUVmHnHuj£íh¹}•B*EHöÿUhph(juÛH
h¹}•OJQJUVmHnHujh¹}•B*Uhphh¹}•B*hphh¹}• h¹}•h h·.Oh‹h‰\4h+ùjMçh‹UjÀšKN
h‹OJQJUVjh‹UjoÔh} 2Uh‹h‹>*h‹h·.O ;;;);+;-;.;ööööö=¸kd«ì$$If–FÖֈªÁï
ï-".'áÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
Faöð $$Ifa$.;8;P;h;€;˜;¤;ùìììãì $$Ifa$
$„^$If]„^a$$Ife;f;g;h;i;|;};~;;€;;”;•;–;—;¤;¥;¯;°;Ã;Ä;Å;Æ;Ç;È;Û;Ü;ïá×áײá×áםá׈×á×scá×á×N(jbmÜH
h¹}•OJQJUVmHnHujµöh¹}•B*EHôÿUhph(jNmÜH
h¹}•OJQJUVmHnHu h¹}•hjyóh¹}•B*EHâÿUhph(jÞmÜH
h¹}•OJQJUVmHnHujñh¹}•B*EHöÿUhph(jUuÛH
h¹}•OJQJUVmHnHuh¹}•B*hphjh¹}•B*UhphjŒïh¹}•B*EHúÿUhph¤;¥;¯;Ç;ß;÷;F@333
$„^$If]„^a$$If¸kd½õ$$If–FÖֈªÁï
ï-".'áÖ0ÿÿÿÿÿÿöÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿÖÿÿÿÿÿÿ4Ö
FaöðÜ;Ý;Þ;ß;à;ó;ô;õ;ö;ù;ú;