EXAMEN DE CRYPTOGRAPHIE
by using Euclid's Algorithm. Hint: you don't need to simplify x. Corrigé : Exercice 1
: 1. On a aa' = 1 + k(p ? 1) donc maa' = m.mk(p?1) m mod p, puisque m(p?1) ...
part of the document
Examen de Sécurité Informatique
Durée : 1h30 Documents non autorisés
Exercice 1 (7pts)
1. On considère le crypto système (sans clé) suivant :
Un grand nombre premier p est public et les unités de message sont des entiers m, 1 d" m 5lhmHsHhE-dhE-dhmHsHhÛghmHsHhE-dhmHsHhÛghVH*hmHsHhVhVH*hmHsH jºðhVhmHsHhVhVhmHsHhVhmHsH0N¾`¾MNOPQR¼UññàÏϾ°°°°°°°$
&F1$7$8$H$a$gd¤,E
$1$7$8$H$a$gd¤,E$
&F1$7$8$H$a$gd>5l$
&F1$7$8$H$a$gdE-d$
&F1$7$8$H$a$gdV
$1$7$8$H$a$gdV TU-QTUZ\j ¦§¨©ª¸Ñã*,1678£¥Ó"óêóêóêóêáÕÉÕÉÕÉÕÉÕÉáÉáÉáÉá긬óáóáóáó shî~hî~hmHsHhî~hmHsHhISYhISYhmHsHhISY5\hmHsHh¤,Eh°s§hmHsHh¤,Ehû]ÅhmHsH jÕhû]Åhû]ÅUhmHsHhû]Åh¤,EhmHsHhû]Åhû]ÅhmHsHhû]ÅhmHsHh¤,EhmHsHh¤,Eh¤,EhmHsH)¨ª78ëLÓ#
¤¥ý`º U r îØÊ¾µµµµµµµµµ©©©©©©$¤ÿ]¤ÿa$gdî~¤ÿ]¤ÿgdISY$¤ÿ]¤ÿa$gdGX
$1$7$8$H$a$gd¤,E$8h1$7$8$H$^8`ha$gdû]Å$
&F1$7$8$H$a$gdû]År ¥ !U!f!¼!!""Ô"Õ"#Y#£#î#:$$$Ð$%e%©%ð%x@ú@ü@AóóóóóóóóóåååååååååååååÙÙÙ$¤ÿ]¤ÿa$gd¯h
$1$7$8$H$a$gd¯h$¤ÿ]¤ÿa$gdî~Ó"Õ""#$#(#*#;#>#A#E#L#O#R#V#_#a#t#u#{#|#¯#°#¶#·#Ô#×#Ø#Ù#Ú#Ý#$$:$
hj>
5U\hmHsHhj>
5\hmHsHh¯hhmHsHUh¯hh¯hhmHsHh¯hh¯h6]hmHsH 2 = 7717, y = 12667 and z = 14702. In this case, compute c1
by using Euclid s Algorithm. Hint: you don t need to simplify x.
Corrigé :
Exercice 1:
1. On a aa = 1 + k(p " 1) donc maa = m.mk(p"1) ( m mod p, puisque m(p"1) ( 1 mod p.
2.
(a) 215(1 mod 31, 415(1 mod 31
(b) #A = '(30) = '(2)'(3)'(5) = 8. A = {1, 7, 11, 13, 17, 19, 23, 29, }, éléments
dont les inverses modulo 30 sont respectivement 1, 13, 11, 7, 23, 19, 17, 29.
(c) On doit avoir b " 1 multiple de 5, d'où b = 11.
(d) De 4b = 4 le pirate déduit b = 1 ou b = 11.
Si b = 1, b0 = 1 et m = Eb0 = 8.
Si b = 11, b0 = 11 et m = Eb0 _ 811 _ 233 _ 23 = 8 mod 31.
Exercice 2:
Exercice 3:
(a) The integer k must be coprime to p"1 for the inverse k"1 mod p"1 to exist.
(b) Bob computes u ( yrrs mod p and v ( gm mod p; show that if the signature is valid, then u = v.
yrrs ( gar(gk)k"1(m"ar)( gar+m"ar ( gm mod p.
(c) she can choose integers u and v with v coprime to p " 1, compute r ( guyv mod p and s ( "rv"1 mod p"1; verify that (r, s) is a valid signatuAAAA2AÞAæA&BÊBfCÎC.DpDæDèDEEEE¾EóçÜÑÃñÃÃÃÃÃÃÃÑÜÜܨ¤ÿ]¤ÿgdç$Ð1$7$8$H$`Ða$gdK
$1$7$8$H$a$gd¥-ð
1$7$8$H$gd¥-ð
1$7$8$H$gd¸,ú$¤ÿ]¤ÿa$gd¯h$¤ÿ]¤ÿa$gdÃ/$¼AÆAÈAÊAäAæAîAòAöAøABBB$BäDèDúDüDEEEE&E(EEE¨EªEäEæEêEìEîEðE
FFòæÚæÑæÑòÅÑòÅÑæ»±ª±» yiy[ii[ jºðhçOJQJ^Jhhçh>5lH*OJQJ^JhhçOJQJ^Jhh>5lh>5lOJQJ^Jhh>5lhçOJQJ^Jhh¸,úh¸,ú5hh¥-ð5hh¸,úh¥-ð5hh¥-ðh¥-ð\h j¹ðhKhmHsHh¥-ðhmHsH jºðh¥-ðhmHsHh¥-ðh¥-ðhmHsHh¥-ðh¥-ðH*hmHsH#FFFBFDFFFFFFFFFFF F²F´F¸FÆFÈFÊFÎFÐFhGjGnGpGtGvGxGzGGGðGòGHPHPJPLPNPPPRPVPXP\P^P`PbPdPfPhPjPnPrPñáñÖñáñáñÈñáñáñáÈñáñÈñáñÖñÈñáñáñÈñ½ñ»ñ«ñ«ññ«ñ«ñ«ñ«ññ« jºðho3fOJQJ^Jhho3fh>5lH*OJQJ^JhUho3fOJQJ^Jh jºðhçOJQJ^JhhçOJQJ^Jhhçh>5lH*OJQJ^Jhh>5lh>5lOJQJ^Jh7¾EFàF6PüP_R`RaR~RRRRRRRRRRRööêáÕɾ°®®®®®®®®¬®
$1$7$8$H$a$gd¢
~
1$7$8$H$gdS{¿$¤ÿ]¤ÿa$gd>5l$¤ÿ]¤ÿa$gdK,¤ÿ]¤ÿgdK,$¤ÿ]¤ÿa$gdo3f¤ÿ]¤ÿgdçre for the message m = us.
We find yrrs ( yr(guyv)s ( gusyry"r ( gus mod p, so (r, s) is the signature of the message m = us.
(d) Here (r, s) is a valid signature if yrrs ( gh(m) mod p. In order to find a message with signature (r,s), Malice now has to look for an m with h(m) = us; but this is next impossible for pre-image resistant hash functions.
SHAPE \* MERGEFORMAT
Département informatique Le 7/06/2011
Faculté Electronique et Informatique Master RSD 1ère année
USTHB