

PHP – XML

PHP

et

XML
TABLE DES MATIERES

3Chapitre 1
PHP ET XML

31.1
XML en 3 mots

31.1.1
Définition

41.1.2
La structure d'un document XML

51.1.3
Les parseurs (Analyseurs)

61.1.4
Les processeurs XSL

71.1.5
Trois documents xml de types différents

91.2
PHP et XML

101.3
Création d'un fichier XML à partir d'une table

101.3.1
Objectif

111.3.2
Créer un fichier XML de base (Méthode statique)

121.3.3
Créer un fichier XML de base (Méthode dynamique)

141.4
L'analyse événementielle (SAX)

141.4.1
Généralités

151.4.2
Repérer les balises

171.4.3
Récupérer les attributs des balises

191.4.4
Récupérer les textes des éléments

211.4.5
Exercice : Récupérer les valeurs des attributs et des balises

241.4.6
Afficher des images, des URL … à partir des valeurs des éléments.

261.4.7
Afficher des images, des URL … à partir des attributs des éléments.

271.4.8
xml_parse_into_struct

291.5
L'analyse globale : DOM

291.5.1
Présentation

301.5.2
L'affichage brut d'un fichier XML : saveXml()

311.5.3
L'affichage des valeurs des balises : textContent

321.5.4
L'affichage une à une des valeurs des balises

351.5.5
L'affichage sous condition

361.5.6
Ajouter un élément avec DOM : createElement() et appendChild()

391.5.7
Création ex-nihilo d'un fichier XML

411.5.8
Rechercher un élément : xPath->query()

431.5.9
Rechercher N éléments : starts-with

441.5.10
Autres opérateurs XPATH

451.5.11
Calculer avec XPath->evaluate()

461.5.12
Supprimer un élément : removeChild()

471.5.13
Modifier un élément : replaceChild()

491.5.14
Visualiser les valeurs des attributs des balises : attributes

511.5.15
Ajouter un élément avec des attributs avec DOM

521.5.16
Modifier la valeur d'un attribut avec DOM

531.5.17
Exercice DOM récapitulatif

541.6
PHP et XSL(T)

541.6.1
Présentation de XSL(T)

581.6.2
PHP et XSL(T)

601.7
Annexes et Exercices

611.7.1
XML CRUD

641.7.2
XML vers BD avec DOM (2 éléments).

651.7.3
XML vers BD avec DOM (4 éléments).

671.7.4
XML vers BD avec DOM. Le problème des commentaires.

691.7.5
XML vers BD avec DOM en dynamique.

721.7.6
XML vers BD avec SAX.

741.7.7
XSLT dynamique

751.7.8
BD vers XML avec DOM

821.7.9
XML vers BD avec lecture de la DTD

851.7.10
XML vers BD avec lecture du Schema

861.7.11
Une classe DAO_XML

861.7.12
PHP, XML et RSS

861.7.13
PHP, XML et WebServices

Chapitre 1 PHP ET XML

1.1 XML en 3 mots

1.1.1 Définition

XML (eXtensible Markup Language) est un Langage à balises extensible contrairement à HTML qui est un langage défini avec un nombre de balises limité. HTML est basé sur un lexique (la liste des éléments) et une grammaire (XHTML renforce sa grammaire).

Un document XML est dit conforme s'il correspond à la norme XML (Ecrit en minuscules, les éléments sont fermés, même les éléments vides, …).

XML décrit n'importe quel domaine de données grâce à son extensibilité. Il permet de structurer un domaine, de définir le vocabulaire et la syntaxe des données contenus dans une DTD (Document Type Definition) ou un schéma permettant de vérifier la validité du document XML.

Les balises XML ne décrivent que du contenu contrairement à HTML qui décrit du contenu et de la présentation (
, <td>valeur</td>).

XML permet de séparer le contenu de la présentation. Un même document sera affiché dans des applications ou des périphériques différents. La présentation est le plus souvent réalisée avec XSL (eXtensible Style Language), le langage des feuilles de style pour XML.

XML a été élaboré par le XML Working Group sous l'égide du W3C en 1996.

La norme XML est consultable sur le site du W3C, http://www.w3.org/XML/.

XML est un sous ensemble de SGML (Standard Generalized Markup Language), défini par le standard ISO8879 en 1986.

1.1.2 La structure d'un document XML

Un document XML est formé de :

· Instructions de traitement ou prologue : <?xml …> qui précise l'encodage et éventuellement la feuille de style XSL.

· Eventuellement d'une DTD (Définition de type de document) ou d'un schéma (Modèle de document pour la validation).

· Un élément racine.

· Un ensemble d'éléments.

· Des attributs associés aux éléments.

· Des noeuds Text ou des CDATA (Non analysés).

· Des références à des entités (Structures).

· Des commentaires.

1.1.3 Les parseurs (Analyseurs)

Un parseur est un outil qui permet d'analyser et de valider un document XML.

Un document bien formé est un document qui est conforme à la norme XML définie par le W3C.

C'est l'étape d'analyse qui contrôle la conformité.

Un document valide est un document XML grammaticalement correct. Il correspond à un vocabulaire et une grammaire associés au document.

La grammaire est exprimée sous forme d'un DTD (Document Type Definition) ou d'un schéma de données (XML Schema).

C'est l'étape de validation qui contrôle la validité du document.

1.1.3.1 SAX

Les parseurs SAX (Simple API For XML) analysent les documents selon une approche événementielle en invoquant l'application à chaque ouverture et chaque fermeture d'élément ou lors de l'analyse d'un noeud.

SAX est orienté flux et est adapté aux analyses séquentielles de documents. Les fonctions s’exécutant séquentiellement, il faut travailler avec des globales.

1.1.3.2 DOM

Les parseurs DOM (Document Object Model) charge en mémoire le document dans son ensemble et construisent une représentation arborescente pour permettre à une application de le manipuler.

DOM est orienté document et doit être utilisé lorsqu'il s'agit de faire une analyse d'ensemble, une restructuration du document, des modifications.

DOM n'est pas adapté pour les gros documents (espace mémoire requis important).

1.1.3.3 Eléments de comparaison SAX et DOM

	
	SAX
	DOM

	Accès aux éléments
	Séquentiel/Evénementiel
	Direct

	Empreinte mémoire
	Légère
	Lourde

	CRUD
	R
	CRUD

	Facilité d'écriture du script
	Difficile
	Facile

1.1.4 Les processeurs XSL

Un processeur XSL est un programme qui permet de transformer un document XML en un document utilisable par un client ou une application en fonction de nombreux critères. Cette technologie de transformation la différencie des feuilles de style CSS.

1.1.5 Trois documents xml de types différents

· Format "Document"

villesDocument.xml

Les informations sont dans les nœuds texte des éléments.

<?xml version="1.0" encoding="UTF-8" ?>

<!-- villesDocument.xml -->

<villes>

<ville>

<cp>75012</cp>

<nom_ville>Paris 12</nom_ville>

</ville>

<ville>

<cp>75011</cp>

<nom_ville>Paris 11</nom_ville>

</ville>

<ville>

<cp>75002</cp>

<nom_ville>Paris 2</nom_ville>

</ville>

<ville>

<cp>75021</cp>

<nom_ville>Paris 21</nom_ville>

</ville>

</villes>

· Format "données"

villesData.xml

Les informations sont dans les attributs des éléments.

<?xml version="1.0" encoding="UTF-8" ?>

<!-- villesData.xml -->

<villes>

<ville cp='59000' nom_ville='Lille' photo='lille.jpg' site='www.lille.fr'/>

<ville cp='75011' nom_ville='Paris 11' photo='paris.jpg' site='www.paris.fr'/>

<ville cp='75012' nom_ville='Paris 12' photo='paris.jpg' site='www.paris.fr'/>

<ville cp='78000' nom_ville='Versailles' photo='' site=''/>

<ville cp='78999' nom_ville='Trappes' photo='trappes.jpg' site='www.trappes.fr'/>

<ville cp='06001' nom_ville='Nice1' photo='' site=''/>

<ville cp='06000' nom_ville='Nice' photo='' site=''/>

</villes>

· Format "mixte"

bibliotheque_1.xml

Les informations stables sont dans les attributs des éléments et les informations instables sont dans nœuds Texte des éléments.

<?xml version="1.0" encoding="UTF-8" ?>

<!-- bibliotheque_1.xml -->

<bibliotheque>

<livre titre="La poursuite du bonheur" auteur="Douglas Kennedy" isbn="12345" >

<editeur>Pocket</editeur>

<couverture>la_poursuite_du_bonheur.jpg</couverture>

<site>http://www.douglas-kennedy.com/</site>

<email>contact@douglaskennedy.com</email>

</livre>

<livre titre="L'homme qui voulait vivre sa vie" auteur="Douglas Kennedy" isbn="67890">

<editeur>Belfond</editeur>

<couverture>l_homme_qui_voulait_vivre_sa_vie.jpg</couverture>

<site>http://www.douglas-kennedy.com/</site>

<email>contact@douglaskennedy.com</email>

</livre>

<livre titre="La sieste assassinée" auteur="Philippe Delerme" isbn="235689">

<editeur>Gallimard</editeur>

<couverture>la_sieste_assassinee.jpg</couverture>

<site>http://www.evene.fr/celebre/biographie/philippe-delerm-3273.php</site>

<email>contact@delerme.free.fr</email>

</livre>

<livre titre="Les institutions politiques de la Vème République" auteur="Pascal Buguet" isbn="9012345">

<editeur>SciencesPo Editions</editeur>

<couverture>lesinstitutionsdelaVeme.jpg</couverture>

<site>http://p.b.free.fr</site>

<email>p.b@free.fr</email>

</livre>

</bibliotheque>

1.2 PHP et XML

· Configuration

Pour travailler avec SAX aucune modification de la configuration n'est nécessaire.

Pour DOM en revanche il faut activer dans php.ini la dll : d'où extension=php_domxml.dll.
Pour SAX il n'y a pas de différence entre PHP4 et PHP5; en revanche pour DOM il y a des différences.

SAX est écrit en fonctionnel. SAX est adapté pour une lecture.

DOM est écrit en Objet. DOM est plus souple pour la mise à jour.

· Objectifs de restitution

· Créer un fichier XML à partir d'une table d'une BD.

· Visualiser du XML Brut.

· Visualiser de façon formatée du XML contenant du texte.

· Visualiser de façon formatée du XML contenant du texte et des références à des images et des URL.

· Graphiquement

	Table BD
	
	Fichier XML
	
	Affichage Brut

	
	
	
	
	

	
	
	
	
	Affichage formaté simple

	
	
	
	
	

	
	
	
	
	Affichage formaté avec Images et URL

· Objectifs de mises à jour avec DOM

· Création d'un élément.

· Recherche d'un élément.

· Suppression d'un élément.

· Modification d'un élément.

1.3 Création d'un fichier XML à partir d'une table

1.3.1 Objectif

Créer un fichier XML basique à partir d'une table d'une BD (méthode statique).

Exemple : cours.villes (villes.xml

Puis à partir de n'importe quelle table (méthode dynamique).

cours.table (table.xml

Les deux méthodes vont lire les données dans la table et les transférer dans un fichier XML.

La deuxième méthode diffère dans la mesure où nous allons lire la structure de la table pour ensuite générer la structure du fichier XML (du moins les noms des éléments).

1.3.2 Créer un fichier XML de base (Méthode statique)

· Principes et démarche

La table villes(cp, nom_ville)

	CP
	nom_ville

	75012
	Paris 12

	75011
	Paris 11

	75002
	Paris 2

	75021
	Paris 21

Cet exemple lit des données dans la table Villes de la BD et crée un fichier XML de base avec des éléments reprenant le nom de la table et les noms des colonnes. Ces noms sont connus.

Les données sont les valeurs des champs.

Il s'agit tout simplement de créer un fichier texte d'extension XML.

La première ligne étant le prologue latin : <?xml version=\"1.0\" encoding=\"UTF-8\" ?>
Voici le fichier XML résultant :

<?xml version="1.0" encoding="UTF-8" ?>

<villes>

<ville><cp>75012</cp><nom_ville>Paris 12</nom_ville></ville>

<ville><cp>75011</cp><nom_ville>Paris 11</nom_ville></ville>

<ville><cp>75002</cp><nom_ville>Paris 2</nom_ville></ville>

<ville><cp>75021</cp><nom_ville>Paris 21</nom_ville></ville>

</villes>

· Script

<?php

// --- xmlTableVillesVersXml.php

header("Content-Type: text/html; charset=UTF-8");

// --- Crée un fichier XML à partir de données d'une table d'une BD

mysql_connect("localhost","root","") ;

mysql_select_db("cours") ;

$rs = mysql_query("SELECT cp, nom_ville FROM villes") ;

$lsTexte = "<?xml version='1.0' encoding='UTF-8' ?>\r\n" ;

$lsTexte .= "<!-- villes -->\r\n" ;
$lsTexte .= "<villes>\r\n" ;

while ($enr = mysql_fetch_row($rs))

{

 $lsTexte.="<ville><cp>$enr[0]</cp><nom_ville>$enr[1]</nom_ville></ville>\r\n";

}

$lsTexte .= "</villes>\r\n" ;

file_put_contents("villes.xml", $lsTexte) or die("Erreur écriture");

print("Création terminée") ;

?>

1.3.3 Créer un fichier XML de base (Méthode dynamique)

· Principes et démarche

La table villes(cp, nom_ville)

	CP
	nom_ville

	75012
	Paris 12

	75011
	Paris 11

	75002
	Paris 2

	75021
	Paris 21

La table source est la même mais nous générons dynamiquement les balises en nous appuyant sur les méta-données. Si le nom de la table source change, tout est généré en fonction de ce nom.

Le nom de l'élément racine est le nom de la table.

Le nom de l'élément principal est le nom de la table sans s (nom de la table moins 1 caractère).

Ensuite ce sont les noms des colonnes qui servent pour les éléments de dernier niveau.

Note : d'autres algorithmes sont envisageables (racine, nom de table, nom des colonnes,…)

La première ligne étant le prologue latin : <?xml version=\"1.0\" encoding=\"UTF-8\" ?>
Voici le code XML résultant :

<?xml version="1.0" encoding="UTF-8" ?>

<villes>

<ville><cp>75012</cp><nom_ville>Paris 12</nom_ville></ville>

<ville><cp>75011</cp><nom_ville>Paris 11</nom_ville></ville>

<ville><cp>75002</cp><nom_ville>Paris 2</nom_ville></ville>

<ville><cp>75021</cp><nom_ville>Paris 21</nom_ville></ville>

</villes>

· Script

<?php

// --- xmlTableVersXmlDocument.php

header("Content-Type: text/html; charset=UTF-8");

if (isSet($_GET["it_table"]))

{

 // --- Crée un fichier XML à partir de données d'une table d'une BD

 $lsTable = $_GET["it_table"] ;

 $lsElementParent = substr($lsTable, 0, strlen($lsTable)-1);
 print("Création de $lsTable.xml à partir de la table $lsTable d'une BD") ;

 mysql_connect("localhost","root","") ;

 mysql_select_db("cours") ;

 $rs = mysql_query("SELECT * FROM $lsTable") ;

 $lsTexte = "<?xml version='1.0' encoding='UTF-8' ?>\r\n" ;

 $lsTexte .= "<!-- $lsTable -->\r\n" ;
 $lsTexte .= "<$lsTable>\r\n" ; // --- Elément racine

 while($enr = mysql_fetch_assoc($rs))

 {

$lsTexte .= "<$lsElementParent>\r\n" ;

foreach($enr as $champ => $valeur)

{

$lsTexte .= "\t<$champ>$valeur</$champ>\r\n" ;

}

$lsTexte .= "</$lsElementParent>\r\n" ;

 }

 $lsTexte .= "</$lsTable>\r\n" ;

 file_put_contents("$lsTable.xml", $lsTexte) or die("Erreur écriture");

}

?>

<form action="" method="get">

<label>Table ? </label><input type="text" name="it_table" value="villes" />

<input type="submit" />

</form>

· Exercice

Faites la même chose pour un XML "data".

1.4 L'analyse événementielle (SAX)

1.4.1 Généralités

Simple API for XML ou SAX est une interface de programmation pour de nombreux langages permettant de lire et de traiter des documents XML.

Les méthodes SAX et DOM adoptent chacune une stratégie très différente pour analyser les documents XML; elles s'utilisent donc dans des contextes différents. DOM charge l'intégralité d'un document XML dans une structure de donnée, qui peut alors être manipulée puis reconvertie en XML. Cependant pour cela il faut que la taille de la structure représentant le document XML ne soit pas supérieure (ou pas trop) à ce que peut contenir la mémoire vive. La méthode SAX apporte alors une alternative dans les cas où les documents XML sont de taille très importante (on parle alors de scalabilité – effet d'échelle -).

SAX traite les documents élément par élément au fur et à mesure qu'ils sont rencontrés. Pour chaque élément (balise, commentaire, texte), une fonction de rappel (callback) correspondante est appelée. C'est pourquoi ce mode d'interprétation des documents XML utilise moins de mémoire, car SAX n'accumule aucune donnée dans une structure. Cependant le programmeur peut très bien recueillir les données qui l'intéressent dans les structures de son choix, ou bien réaliser directement des opérations correspondant aux éléments rencontrés dans le document.

Les principaux événements déclenchés lors d'une analyse SAX sont :

· Début de document,

· Instruction de traitement,

· Commentaire,

· Début d'élément,

· Présence de texte,

· Fin d'élément,

· Fin de document.

Un script PHP-SAX sera structuré ainsi en 3 parties :

	Fonctions de CallBack

	Création du parseur et événements à gérer

	Lecture du fichier et analyse du XML

1.4.2 Repérer les balises

· Objectif

Repérer les balises ouvrantes et fermantes du document villes.xml et les afficher.

La fonction principale est : xml_set_element_handler.
· Ecran

[image: image1.png]Mozilla Firefox

Echier Edton Affichage Hstoriqus Merquerpages Outls 2

3 tepiftocahostptoursxnisax baisesst | 7| b] < - - (@

Balise ouvrante : VILLES
Balise ouvrante : VILLE

Balise ouvrante : CP

Balise fermante : CP

Balise ouvrante : NOM_VILLE
Balise fermante : NOM_VILLE
Balise fermante : VILLE
Balise ouvrante : VILLE

Balise ouvrante : CP

Balise fermante : CP

· Démarche

Créer les fonctions personnalisées :

getBaliseOuvrante(parseur, nomBalise) un troisième paramètre facultatif sera utilisé plus loin.

getBaliseFermante(pareur, nomBalise)
Créer un parseur (xml_parser_create) en passant comme argument la norme ISO utilisée.

Préciser les fonctions qui permettent de récupérer les balises (xml_set_element_handler).

Ouvrir le fichier et lire le XML.

Analyser le XML avec xml_parse.

Libérer la mémoire avec xml_parser_free.

xml_set_element_handler(parseurXML , "fonctionOuvrante" , "fonctionFermante") ;

· Script PHP

<?php

// --- saxBalises.php

header("Content-Type: text/html; charset=UTF-8");

// --- Analyse SAX des balises d'un fichier XML

// ---

function getBaliseOuvrante($parseur, $nomBalise)

// ---

{

echo "Balise ouvrante : $nomBalise
" ; return true ;

}

// ---

function getBaliseFermante($parseur, $nomBalise)

// ---

{

echo "Balise fermante : $nomBalise
" ; return true ;

}

// --- Crée un parseur

$parseurXML = xml_parser_create("UTF-8") ;

// --- Déclare au parseur les fonctions à solliciter lorsque des balises ouvrantes ou fermantes sont rencontrées

// --- Obligatoirement 2 fonctions CallBack comme arguments

xml_set_element_handler($parseurXML, "getBaliseOuvrante", "getBaliseFermante");

// --- Ouvre le fichier XML à analyser

$xml = file_get_contents("villes.xml");

// --- Analyse une chaîne de caractères avec un parseur XML

// --- Dès qu'une balise est rencontrée les fonctions sont appelées

xml_parse($parseurXML, $xml) ;

// --- Libère la mémoire allouée au parseur

xml_parser_free($parseurXML) ;

?>

1.4.3 Récupérer les attributs des balises

· Objectif

Afficher les valeurs des attributs des balises qui en possèdent.

Le fichier villes.xml ne comportant pas d'attributs nous en empruntons un autre (bibliotheque_1.xml) pour cette démonstration. La balise <livre> possède 2 attributs.

Cette fois-ci les fonctions personnalisées sont :

getBaliseOuvrante(parseur, nomBalise, attributs[]) un troisième paramètre facultatif est utilisé.

C'est un tableau qui contient les attributs éventuels.

getBaliseFermante(parseur, nomBalise)

· Résultat attendu

[image: image2.png]Mozilla Firefox

Fchier Edton Affichage Hstorigus Marque-pages Outls

(B hitpifocahostiphpfcous rifsax_attbuts pho | <]] <@ - o0 - (@

titre La poursuite du bonheur

isbn: 12345

titre : L'homme qui voulai vivre sa vie

isbn 67890

titre : La sieste assassinée

isbn: 235689

titre - Les instifutions poliiques de la Véme République
isbn: 9012345

· Démarche

Le "parsing" du fichier est le même. Ce sont les fonctions qui diffèrent.

Sur la balise fermante on ne fait rien (return True).

Sur la balise ouvrante on teste la présence d'attributs. Si elle en possède un ou plusieurs on affiche la valeur de(s) l'attribut(s) en passant par les éléments du tableau d'attributs.

· Script PHP

<?php

// --- saxAttributs.php

header("Content-Type: text/html; charset=UTF-8");

// --- Analyse SAX : Affichage des valeurs des attributs des balises

// ---

function getBaliseOuvrante($parseur, $nomBalise, $tableauAttributs)

// ---

{

// --- La balise

// --- Les éventuels attributs

if(count($tableauAttributs) > 0)

foreach($tableauAttributs as $cle => $valeur) print(" $cle : $valeur
");

return true ;

}

// ---

function getBaliseFermante($parseur, $nomBalise)

// ---

{

return true ;

}

// --- Crée un parseur

$parseurXML = xml_parser_create("UTF-8") ;

// --- Option : à False met tout en majuscule

xml_parser_set_option($parseurXML , XML_OPTION_CASE_FOLDING, FALSE);

xml_set_element_handler($parseurXML, "getBaliseOuvrante" , "getBaliseFermante") ;

$xml = file_get_contents("bibliotheque_1.xml");

xml_parse($parseurXML , $xml) ;

xml_parser_free($parseurXML) ;

?>

1.4.4 Récupérer les textes des éléments

· Objectif

Récupérer les textes des éléments et les afficher. Nous reprenons le fichier villes.xml.

La fonction principale est : xml_set_character_data_handler.
[image: image3.png]Mozilla Firefox

Echier Edton Affichage Hstoriqus Merquerpages Outls 2

(@ repiifocahostiphpjcours_rifssx_valeurs.shp ») @ -

06000
Nice
nice.jpg
wrw nice fr
14001
Caen

caenjpg
www.caen fr

· Démarche

Créer une fonction d'analyse et d'affichage de valeurs.

Cette fonction comporte 2 arguments (parseur et texte).

Créer un parseur.

Signifier au parseur la fonction à utiliser lorsqu'il rencontre du texte.

Analyser.

xml_set_character_data_handler(parseurXML , "getValeur") ;

à comparer au xml_set_element_handler(parseurXML, "Ouvrante", "Fermante") précédent.

· Script PHP

<?php

// --- saxTextes.php

header("Content-Type: text/html; charset=UTF-8");

// --- Affichage des textes des éléments

// ---

function getValeur($parseur, $texte)

// ---

{

if(strlen(trim($texte)) > 0) echo "$texte
" ;

return true ;

}

// --- Crée un parseur

$parseurXML = xml_parser_create("UTF-8") ;

// --- Déclare au parseur la fonction à solliciter lorsque du texte est trouvé

xml_set_character_data_handler($parseurXML , "getValeur") ;

$xml = file_get_contents("villes.xml");

xml_parse($parseurXML , $xml) ;

xml_parser_free($parseurXML) ;

?>

1.4.5 Exercice : Récupérer les valeurs des attributs et des balises

· Objectif

Afficher les valeurs des attributs et des balises.

Nous reprenons le fichier bibliotheque_1.xml.

[image: image4.png]& Mozilla Firefox

BEX]

Echier Edton Affichage Hstoriqus Marquerpages Outls

TITRE (CI&) : La poursuite du bonheur (Valeur)
AUTEUR (CI) : Douglas Kennedy (Valeur)
ISBIN (CI8) : 12345 (Valeu)
Pocket (Texte)
Ia_poursuite_du_bosheur.jpg (Texte)
hitpifwure. douglas-ennedy.com/ (Texte)
contact@douglaskennedy.com (Texte)
TITRE (CI&) : Lhomme qui voulait vivre sa vie (Valeur)
AUTEUR (CI) : Douglas Kennedy (Valeur)
ISBIN (CI8) : 67890 (Valeur)
Belfond (Texte)
1_homme_aqui_voulait_vivre_sa_vie jpg (Textc)
hitpiffwane. douglas-kennedy. com/ (Texte)
contact@douglaskennedy.com (Texte)
TITRE (CIE) : La sieste assassinée (Valeur)

· Démarche

Créer un parseur et parser.

Créer une fonction d'analyse et d'affichage de valeur.

Signifier au parseur les fonctions à utiliser lorsqu'il rencontre des balises et des attributs :

xml_set_element_handler($parseurXML , "getBaliseOuvrante" , "getBaliseFermante") ;

Signifier au parseur la fonction à utiliser lorsqu'il rencontre du texte :

xml_set_character_data_handler($parseurXML , "getValeur") ;

Remarque : pour afficher les valeurs des attributs (comme c'est le cas sur l'écran ci-dessus) il faudra ajouter dans le script qui suit l'analyse des balises et des attributs des balises.

· Script PHP

<?php

// --- saxTextesEtAttributs.php

header("Content-Type: text/html; charset=UTF-8");

// --- Affichage des valeurs des textes et des attributs des balises

// ---

function getBaliseOuvrante($parseur, $nomBalise , $tableauAttributs)

// ---

{

// --- Les éventuels attributs

if(count($tableauAttributs) > 0)

{

foreach($tableauAttributs as $cle => $valeur) print(" $cle (Clé) : $valeur (Valeur)
") ;

}

return true ;

}

// ---

function getBaliseFermante($parseur, $nomBalise)

{

return true ;

}

// ---

function getValeur($parseur, $texte)

// ---

{

if(strlen(trim($texte)) > 0) echo " $texte (Texte)
" ;

return true ;

}

// --- Crée un parseur

$parseurXML = xml_parser_create("UTF-8") ;

// --- Déclare au parseur les fonctions à solliciter lorsque des balises ouvrantes ou fermantes sont rencontrées

xml_set_element_handler($parseurXML , "getBaliseOuvrante" , "getBaliseFermante") ;

// --- Déclare au parseur la fonction à solliciter lorsque du texte est trouvé

xml_set_character_data_handler($parseurXML , "getValeur") ;

$xml = file_get_contents("bibliotheque_1.xml");

xml_parse($parseurXML , $xml) ;

xml_parser_free($parseurXML) ;

?>

Tableau récapitulatif des fonctions utilisées

	Fonction
	Description

	$parseurXML = xml_parser_create("UTF-8")
	Crée un parseur

	xml_parser_set_option($parseurXML , option, valeur) ;
	Précise les options du parseur (*)

	xml_set_element_handler($parseurXML , "fonctionBaliseOuvrante" , "fonctionBaliseFermante")
	Précise les fonctions pour l'analyse des balises, des éléments.

	xml_set_character_data_handler($parseurXML , "fonctionValeur")
	Précise la fonction pour l'analyse des valeurs des éléments.

	xml_parse($parseurXML , $ligneXML , feof($fp))
	Analyse un bloc d'octets

	xml_parser_free($parseurXML)
	Libère l'espace mémoire utilisé par le parseur

(*)

	Option
	Type
	Description

	XML_OPTION_CASE_FOLDING
	Entier
	Contrôle la gestion de la casse des balises. Par défaut, activé (1).

	XML_OPTION_SKIP_TAGSTART
	Entier
	Nombre de caractères à ignorer au début du nom de la balise.

	XML_OPTION_SKIP_WHITE
	Entier
	Ignore ou non les valeurs contenant des caractères blancs. Par défaut désactivé (0).

	XML_OPTION_TARGET_ENCODING
	Chaîne
	Modifie le codage de la cible. Par défaut, c'est celui qui a été spécifié lors de l'appel de xml_parser_create(). Les codages supportés sont ISO-8859-1, US-ASCII et UTF-8.

Autres fonctions

	Fonction
	Description

	xml_get_current_line_number(parseur)
	Renvoie la ligne courante

	xml_get_current_column_number(parseur)
	Renvoie la colonne courante

	xml_get_current_byte_index(parseur)
	Renvoie l'octet courant

	xml_parse_into_struct(parseur, données, valeurs [, index])
	Parse une chaîne de caractères dans un tableau de valeurs et un tableau d'index.

1.4.6 Afficher des images, des URL … à partir des valeurs des éléments.

· Objectif

Afficher dans un tableau HTML les valeurs des attributs et des éléments et des "éléments" spéciaux (Photos, adresse mail, adresse de sites,…).

C'est par une analyse de chaîne de caractères que nous opérons.

Ce pourrait être par des attributs dans les balises s'ils existaient (attribut type=image ou autre par exemple).

· Ecran

[image: image5.png]Mozilla Firefox

Echier Edton Affichage Hstoriqus Merquerpages Outls 2

(5] http:{fiocalhast/phpfcours xmixm_image_generiaue.php

Inttp:fforwrw. douglas-kennedy. com/

contact@douglasken

Inttp:fforwrw. douglas-kennedy. com/

contact@douglasken

· Script

<?php

// --- saxImageGenerique.php

header("Content-Type: text/html; charset=UTF-8");

// --- Analyse avec SAX : Affichage de valeurs, d'images et de liens

// ---

function getBaliseOuvrante($parseur, $nomBalise, $tableauAttributs)

// ---

{

return true ;

}

// ---

function getBaliseFermante($parseur, $nomBalise)

{

// --- Saut de ligne si balise fermante de l'élément principal

if($nomBalise == "livre") print("</tr>\r\n<tr>\r\n") ;

return true ;

}

// ---

function getValeur($parseur, $texte)

// ---

{

if(strlen(trim($texte)) > 0)

{

$lbAffiche = 0 ;

// --- Affichage d'une image

if (substr($texte,strlen($texte)-3) == "jpg") { print("<td></td>\r\n") ; $lbAffiche = 1 ; }

// --- Affichage d'une URL

if (substr($texte,0,7) == "http://") { print("<td>$texte</td>\r\n") ; $lbAffiche = 1 ; }

// --- Affichage d'une adresse mail

if (strpos($texte,"@") > 0) { print("<td>$texte</td>\r\n") ; $lbAffiche = 1 ; }

// --- Affichage d'un texte

if (($lbAffiche == 0)and (strlen(trim($texte)) > 0)) { print("<td>$texte</td>\r\n") ; $lbAffiche = 1 ; }

}

return true ;

}

// ------- Crée un parseur

$parseurXML = xml_parser_create("UTF-8") ;

xml_parser_set_option($parseurXML , XML_OPTION_CASE_FOLDING, FALSE) ;

xml_set_element_handler($parseurXML, "getBaliseOuvrante", "getBaliseFermante");

xml_set_character_data_handler($parseurXML , "getValeur") ;

print("<table border='1'>\r\n<tr>\r\n") ;

$xml = file_get_contents("bibliotheque_1.xml");

xml_parse($parseurXML , $xml) ;

xml_parser_free($parseurXML) ;

print("</tr>\r\n</table>") ;

?>

1.4.7 Afficher des images, des URL … à partir des attributs des éléments.

· Exercice

A partir de bibliotheque_2.xml réalisez la même affichage que précédemment.

<?xml version="1.0" encoding="UTF-8" ?>

<bibliotheque>

<livre isbn="11111" titre="La poursuite du bonheur" auteur="Douglas Kennedy">

<couverture type="image">la_poursuite_du_bonheur.jpg</couverture>

<site type="url">http://www.douglas-kennedy.com/</auteur>

<email type="email">contact@douglaskennedy.com</email>

<editeur>Pocket</editeur>

</livre>

<livre isbn="22222" titre="L'homme qui voulait vivre sa vie" auteur="Douglas Kennedy">

<couverture type="image">l_homme_qui_voulait_vivre_sa_vie.jpg</couverture>

<site type="url">http://www.douglas-kennedy.com/</auteur>

<email type="email">contact@douglaskennedy.com</email>

<editeur>Belfond</editeur>

</livre>

<livre isbn="33333" titre="La sieste assassinee" auteur="Delerme">

<couverture type="image">la_sieste_assassinee.jpg</couverture>

<site type="url">http://www.evene.fr/celebre/biographie/philippe-delerm-3273.php</auteur>

<email type="email">contact@delerme.free.fr</email>

<editeur>Gallimard</editeur>

</livre>

<livre isbn="44444" titre="Les institutions politiques de la Veme Republique" auteur="Pascal Buguet">

<couverture type="image">lesinstitutionsdelaVeme.jpg</couverture>

<site type="url"></auteur>

<email type="email">p.b@free.fr</email>

<editeur>SciencesPo Editions</editeur>

</livre>

</bibliotheque>

1.4.8 xml_parse_into_struct

· Présentation

Analyser un document via une structure de tableaux.

xml_parse_into_struct($parseur, $contenu, $valeurs [, $index]);

La fonction xml_parse_into_struct renvoie une structure qui contient 2 tableaux de tableaux.

Le premier tableau contient les valeurs et le deuxième les index.

Les valeurs contiennent un tableau contenant : le nom de la balise, type de la balise (open, close, complete) , le niveau de la balise (1 –racine- , 2, …), la valeur, un tableau d'attributs éventuel.

[image: image6.png]Mozilla Firefox

Fchier Edton Affichage Hstoriqus Marque-pages

outls 7

() http:fiocalhost/phpjcours_xmljsax_to_structure.php

> G-

Tableau de valeurs
tag - viles
type - open
level - 1

tag - ville

type - open
level :2

tag cp

type : complete
level -3

value : 06000
tag : nom
type : complete
level : 3

value : Nice
tag : photo
type : complete
level -3

value : nice.jpg
tag - sive

type : complete
level -3

value : www.nice &
tag - ville

type - close
level :2

· Script

<?php

// --- saxIntoStruc.php

header("Content-Type: text/html; charset=UTF-8");

$contenu = file_get_contents("villes.xml");

$parseur = xml_parser_create("UTF-8");

xml_parser_set_option($parseur, XML_OPTION_CASE_FOLDING, false);

xml_parser_set_option($parseur, XML_OPTION_SKIP_WHITE, true);

/* Remplissage de la structure */

xml_parse_into_struct($parseur, $contenu, $valeurs, $index);

/* Libération mémoire */

xml_parser_free($parseur);

/* Parcours du tableau de valeurs */

echo "\nTableau de valeurs
\n";

foreach($valeurs as $cle1 => $t)

{

foreach($t as $cle2 => $valeur)

{

echo "$cle2 : $valeur
";

}

}

?>

1.5 L'analyse globale : DOM

1.5.1 Présentation

Le Document Object Model (ou DOM) est une recommandation du W3C qui décrit une interface indépendante de tout langage de programmation et de toute plate-forme, permettant à des programmes informatiques d'accéder ou de mettre à jour le contenu, la structure ou le style de documents.

Le DOM Level 1 (1998) définit un modèle de représentation arborescente de document (document XML ou autre). Chaque élément généré à partir du balisage forme un nœud.

Le DOM Level 2 (2000) est constitué de six parties (Core, HTML, Events, Style, View et Traversal and Range).

DOM construit un arbre logique contenant les informations issues d'un document.

Il est nécessaire de mémoriser l'intégralité du document avant de pouvoir effectuer les traitements voulus. Pour ce motif les programmes utilisant DOM ont une empreinte mémoire volumineuse.

A partir d'un arbre DOM donné, il est possible de générer d'autres documents dans le langage de balisage voulu, qui pourront à leur tour être manipulés par l'interface DOM (Processus de transformation; de XML vers HTML par exemple).

DOM est essentiellement utilisé pour pouvoir modifier facilement des documents XML.

DOM peut être utilisé pour la lecture mais il est préférable d'utiliser SAX surtout si la taille du document peut dépasser la capacité mémoire de l'ordinateur ou de l'espace alloué à la requête.

1.5.2 L'affichage brut d'un fichier XML : saveXml()

· Objectif

Afficher le contenu du fichier villes.xml avec la méthode saveXml() du DOM.

La méthode saveXml() ne récupère pas les attributs des balises.

[image: image7.png]O
Hier Eton fchoge Alera Mrmeposes Ouls

hitps/fiocahostiphp/cours_mljdom_La.php © ok

75012Paris 12 14000Caen 7501 1Paris 11

· Le fichier villes.xml

<?xml version="1.0" encoding="UTF-8" ?>

<villes>

<ville>

<cp>75012</cp>

<nom_ville>Paris 12</nom_ville>

</ville>

<ville>

<cp>75011</cp>

<nom_ville>Paris 11</nom_ville>

</ville>

<ville>

<cp>75002</cp>

<nom_ville>Paris 2</nom_ville>

</ville>

<ville>

<cp>75021</cp>

<nom_ville>Paris 21</nom_ville>

</ville>

</villes>

· Trois méthodes pour afficher

	Méthode
	Description

	Dom = New DomDocument()
	Instanciation d'un nouveau DomDocument.

	Booléen = Dom->Load("nomDeFichier.xml")
	Chargement du document.

	Dom->saveXml()
	Transfère le contenu (les textes des nœuds, pas les attributs) dans une chaîne de caractères.

· Script PHP

<?php

// ----------------------------

// --- Affichage, un peu brutal, du fichier XML

// ----------------------------

$dom = new DomDocument();

$dom->load("villes.xml");

echo $dom->saveXML();

?>

1.5.3 L'affichage des valeurs des balises : textContent

· Objectif

Afficher les noms des villes.

[image: image8.png]dom_1b.php - Mozilla Firefox EEX

Fchier Edton Affichage Alerd Marque-pages Out

L1 hitpiflocabostiphp/cours_xmijdom_tb.php

Paris 12
Caen
Paris 11

0O o

· Méthodes utilisées

Une méthode et une propriété pour afficher les valeurs de balises particulières

	Méthodes/Propriétés
	Description

	Nœuds = Dom->getElementsByTagName("balise")
	Renvoi un tableau d'éléments, de nœuds (nodes) de l'arbre du document

	String = nœud->textContent
	Renvoi le texte d'un noeud

Quelque soit le niveau, le passage d'un nom de balise comme argument de getElementsByTagName récupèrera un tableau de noeuds. Et ensuite pour chaque nœud on utilise la propriété textContent pour récupérer la valeur.

Par exemple "villes" affichera tous les CP et NOM_VILLE,

"ville" affichera cp et nom,

"cp" affichera tous les cp,

"nom_ville" affichera tous les noms des villes.

· Script PHP

<?php

// --- domTexte.php

header("Content-Type: text/html; charset=UTF-8");

$dom = new DomDocument();

$dom->load("villes.xml");

// --- Chargement dans un tableau des éléments "nom_ville"

$noeuds = $dom->getElementsByTagName("nom_ville");

// --- Balayage du tableau

foreach($noeuds as $noeud) print $noeud->textContent . "
\n";

?>

Pour récupérer le premier élément (on est sûr qu'il n'y en a qu'un par exemple) :

echo "
Latitude : ", $dom->getElementsByTagName("lat")->item(0)->textContent, "
";

1.5.4 L'affichage une à une des valeurs des balises

· Objectif

Afficher les éléments Ville ligne par ligne.

[image: image9.png]@ Mozilla Firefox (- |0JB3

Echier Ediion

75012Pasis 12
7501 1Paris 11
75002Paris 2
75021Paris 21
14200Cabourg
44703 atle

affichage Historia

75012 Peis 12

75011-Pais 11
75002 Paris 2
75021-Paris 21
14200-Cabourg
4470 Sable

75012 Pais 12-

75011-Pais 11-
75002 Paris 2-
75021-Paris 21-
14200-Cabourg:
4470 Siable-

· Méthodes/propriétés utilisées

	Méthodes/Propriétés
	Description

	Nœuds = Dom->getElementsByTagName("balise")
	Renvoi un tableau d'éléments, de nœuds (nodes) de l'arbre du document

	Nœud = nœuds->firstChild
	Renvoie le premier enfant

	Nœud = nœuds->lastChild
	Renvoie le dernier enfant

	Nœuds = nœuds->childNodes
	Renvoie les nœuds enfants (un tableau de nœuds)

	String = nœud->nodeName
	Nom d'un nœud (Cf page suivante)

	int = nœud->nodeType
	Type d'un nœud (Cf page suivante)

	String = nœud->textContent
	Texte d'un nœud

	String = nœud->nodeValue
	Valeur d'un nœud

	Dom->preserveWhiteSpace = false;
	Enlève les caractères "parasites" : espace, tab, RC, … A mettre avant le load().

	Dom->formatOutput = true;
	Préserve l'indentation

· Noms de nœuds (nodeName)

	nodeName
	Description

	identique à Attr.name
	nœud attribut

	"#cdata-section"
	nœud de section CDATA

	"#comment"
	nœud de commentaire

	"#document"
	nœud de document

	"#document-fragment"
	nœud de fragment de document

	identique à DocumentType.name
	nœud de type de document

	identique à Element.tagName
	nœud élément

	nom de l'entité
	nœud d'entité

	nom de la référence d'entité
	nœud de référence à une entité

	nom de la notation
	nœud de notation

	identique à ProcessingInstruction.target
	nœud d'instruction de traitement

	"#text"
	nœud texte

· Types de nœuds (nodeType)

	Constante
	Constante nommée de nodeType
	Description

	 1
	Node.ELEMENT_NODE
	nœud élément

	 2
	Node.ATTRIBUTE_NODE
	nœud attribut

	 3
	Node.TEXT_NODE
	nœud texte

	 4
	Node.CDATA_SECTION_NODE
	nœud de section CDATA

	 5
	Node.ENTITY_REFERENCE_NODE
	nœud de référence à une entité

	 6
	Node.ENTITY_NODE
	nœud d'entité

	 7
	Node.PROCESSING_INSTRUCTION_NODE
	nœud d'instruction de traitement

	 8
	Node.COMMENT_NODE
	nœud de commentaire

	 9
	Node.DOCUMENT_NODE
	nœud de document

	 10
	Node.DOCUMENT_TYPE_NODE
	nœud de type de document

	 11
	Node.DOCUMENT_FRAGMENT_NODE
	nœud de fragment de document

	 12
	Node.NOTATION_NODE
	nœud de notation

· Script PHP

<?php

// --- domTextes.php

header("Content-Type: text/html; charset=UTF-8");

$dom = new DomDocument();

$dom->preserveWhiteSpace = false;

$dom->load("villes.xml");

// --- Chargement dans un tableau des éléments "ville"

$elements = $dom->getElementsByTagname("ville");

// --- Balayage du tableau et affichage du contenu de <ville>

foreach($elements as $element)

{

print $element->textContent . "
\n";

}

print "<hr />";

// --- Balayage du tableau et affichage du contenu de cp et nom_ville séparés par un -

foreach($elements as $element)

{

print $element->firstChild->textContent . "-" . $element->lastChild->textContent . "
\n";

}

print "<hr />";

// --- Balayage du tableau et affichage de tous les nœuds séparés par un -

foreach($elements as $element)

{

$enfants = $element->childNodes;

foreach($enfants as $enfant) print $enfant->textContent . "-";

print "
";

}

?>

· Commentaires

La première partie affiche le textContent de l'élément <ville>.

La deuxième partie affiche le textContent des premier et dernier éléments de l'élément <ville>.

La troisième partie affiche le textContent de tous les éléments enfant de l'élément <ville>.

Préférez la dernière solution.

1.5.5 L'affichage sous condition

· Objectif

Afficher les noms des villes.

[image: image10.png]Mozilla Firefox

Echier Edton Affichage Aler Marque-pages Outls

) itp:locahostiphp/cours_xmijdom_ibbb.php 4

Paris 12
Caen
Paris 11

Deux méthodes et propriétés pour afficher les valeurs de balises particulières

Avec ces méthodes nous testons l'existence de balises par leur nom.

	Méthode
	Description

	Objet = document->documentElement
	Renvoie la racine

	Int = noeud->nodeType
	Renvoie le type d'un nœud

1 : élément

2 : attribut

3 : texte … jusqu'à 12

	String = noeud->nodeName
	Renvoie le nom d'un nœud (le nom de la balise)

	String = nœud->textContent
	Renvoi le texte d'un nœud

· Script

<?php

// --- domConditions.php

header("Content-Type: text/html; charset=UTF-8");

$dom = new DomDocument();

$dom->load("villes.xml");

// --- Pour tous les noeuds enfants de premier niveau du document

foreach($dom->documentElement->childNodes as $noeud)

{

// --- Si le type du noeud est élément et que le nom est "ville"

if($noeud->nodeType == 1 && $noeud->nodeName == "ville")

{

foreach($noeud->childNodes as $item)

{

// --- Si le type du noeud est de type élément et que le nom est "nom_ville" alors on affiche

if($item->nodeType == 1 && $item->nodeName == "nom_ville") print($item->textContent . "
\n");

}

}

}

?>

1.5.6 Ajouter un élément avec DOM : createElement() et appendChild()

· Objectif

Ajouter un élément Ville à Villes dans Villes.xml.

[image: image11.png]@ Mozilla Firefox [B=%]

Echier Edton Afichage Hstoriqus Marquerpages Outls 2

Cp: 14200 Mot : [Cabourg

Démarche :

· Création d'un élément nom_ville,

· Création d'un élément cp,

· Création d'un élément ville,

· Ajout de l'élément cp à ville,

· Ajout de l'élément nom à ville,

· Ajout de l'élément ville à villes,

· Sauvegarde.

· Méthodes utilisées

	Méthode
	Description

	var = document->createElement("nom_element" [, "valeur"])
	Crée un élément sans ou avec une valeur

	Element.nodeValue = "valeur"

	Affecte une valeur à un élément

	var->appendChild(element)
	Ajoute un enfant à un élément

	document->documentElement->appendChild(element)
	Ajoute un enfant au document (ie niveau racine)

	Int = document->save("nom_de_fichier.xml")
	Sauvegarde le document sur le disque

Renvoie le nombre d'octets ou False

	document->saveXML()
	Transfère le contenu de l'arbre dans une chaîne de caractères

	document->preserveWhiteSpace = true | false
	Conserve ou ne conserve pas les espaces et autres caractères similaires (RC, TAB, …).

	$document->formatOutput = true | false
	Crée ou préserve l'indentation ou pas.

· Script

<?php

// --- domVilleAjout.php

header("Content-Type: text/html; charset=UTF-8");

if(isSet($_GET["cp"]))

{

$dom = new DomDocument();

$dom->preserveWhiteSpace = true;

$dom->load("villes.xml");

$dom->formatOutput = true;

// --- Création d'un élément Ville

$ville = $dom->createElement("ville");

// --- Création des éléments CP et nom_ville

$cp = $dom->createElement("cp", $_GET["cp"]);

$nom = $dom->createElement("nom_ville");

$nom->nodeValue = $_GET["nom_ville"];

// --- Ajout du cp et du nom de la ville à l'élement ville

$ville->appendChild($cp);

$ville->appendChild($nom);

// --- Ajout de la ville à VILLES ie le niveau racine

$dom->documentElement->appendChild($ville);

// ---- Sauvegarde dans un fichier

$dom->save("villes.xml");

}

?>

<form action="" method="get">

<label>Cp : </label><input name="cp" type="text" value="14200" />

<label>Nom : </label><input name="nom_ville" type="text" value="Cabourg" />

<input type="submit" />

</form>

Notes : pour pallier un bogue de PHP 5, il faut, si l'on veut préserver le principe d'indentation, utiliser deux méthodes à des places très précises.

La méthode $dom->preserveWhiteSpace = false; avant le load(), et la méthode formatOutput après le load.

· Exercice DOM d'ajout dans un document XML

Objectif : BD -> XML

xmlBd2Xml.php

Créez une table villesNouvelles(cp, nom_ville).

Ajoutez 3 enregistrements à cette table.

Ecrivez un script PHP qui ajoute le contenu de la table villesNouvelles à villes.xml.

· Corrigé

<?php

 // --- xmlBd2Xml.php

 // --- Ajouter les enr de villesNouvelles à villes.xml

 header("Content-Type: text/html; charset=UTF-8");

 mysql_connect("localhost","root","");

 mysql_select_db("cours");

 $lsSql = "SELECT * FROM villesNouvelles";

 $curseur = mysql_query($lsSql);

 $dom = new DomDocument();

 $dom->preserveWhiteSpace = true;

 $dom->load("villes.xml");

 $dom->formatOutput = true;

 while ($enr = mysql_fetch_row($curseur))

 {

 // --- Création d'un élément Ville

 $ville = $dom->createElement("ville");

 // --- Création des éléments CP et nom_ville

 $cp = $dom->createElement("cp", $enr[0]);

 $nom = $dom->createElement("nom_ville", $enr[1]);

 // --- Ajout du cp et du nom de la ville à l'élement ville

 $ville->appendChild($cp);

 $ville->appendChild($nom);

 // --- Ajout de la ville à VILLES ie le niveau racine

 $dom->documentElement->appendChild($ville);

 }

 // ---- Sauvegarde dans un fichier

 $dom->save("villes.xml");

 echo "FINI";

?>

1.5.7 Création ex-nihilo d'un fichier XML

Pour créer un objet-document XML il faut instancier un DomDocument.

$dom = new DomDocument([version [, jeu de caractères]]);

$dom = new DomDocument();

$dom = new DomDocument('1.0'); // --- Le résultat est le même que le premier

$dom = new DomDocument('1.0','UTF-8');

· Le résultat : nouveau.xml

<?xml version="1.0"?>

<villes>

 <ville>

 <cp>75000</cp>

 <nom_ville>Paris</nom_ville>

 </ville>

</villes>

· Le script

<?php

// --- domCreateXml.php

// --- Création d'un document et fichier XML avec DOM

// --- Création du document, de l'arbre DOM

$dom = new DomDocument('1.0','UTF-8');

$dom->formatOutput = true; // --- Pour créer l'indentation

// --- Création de l'élément racine

$villes = $dom->createElement("villes");

// --- Création des autres éléments

$ville = $dom->createElement("ville");

$cp = $dom->createElement("cp","75000");

$nom_ville = $dom->createElement("nom_ville");

$nom_ville->nodeValue = "Paris";

// --- Ajout des enfants au parent

$ville->appendChild($cp);

$ville->appendChild($nom_ville);

// --- Ajout du parent à l'élément racine

$villes->appendChild($ville);

// --- Ajout de l'élément racine au document

$dom->appendChild($villes);

// --- Enregistrer le DOM sur le disque

$dom->save("nouveau.xml");

echo "
C'est fini";

?>

· Pour ajouter un commentaire

createComment("commentaire")

$commentaire = $dom->createComment("Document crée à partir de la BD");

$dom->appendChild($commentaire);

· Pour ajouter un processeur

createProcessingInstruction("processeur" , "référence")

$processeur = $dom->createProcessingInstruction("xml-stylesheet","href=\"bibliotheque_tri.xsl\" type=\"text/xsl\"");

$dom->appendChild($processeur);

1.5.8 Rechercher un élément : xPath->query()

· Objectif

Rechercher un élément dans un document.

[image: image12.png]& Mozilla Firefox (M=)

Echier Edton Affichage Hstorique M

Nombre déléments : 1
*Paris 11%
Cp recherché : 75011

 [image: image13.png]& Mozilla Firefox (M=)

Echier Edton Affichage Hstorique M

Nombre d'éléments : 0
Pas trouvé
Cp recherché : 75022

· Syntaxes

Instanciation d'un objet XPath.

xpath = new DOMXPath(document)

Exécution d'une requête XPath.

noeuds = xpath->query("chemin[condition]/noeud" [, nœudContexte])

Par défaut le contexte est le niveau racine ie $racine = $dom->documentElement;

Exemples :

$lsQuery = "//villes/ville[cp='$lsCp']"; // Les villes dont le cp est égal à …

$lsQuery = "//villes/ville/cp[.='$lsCp']"; // Les cp égaux à …

$lsQuery = "//villes/ville[cp='$lsCp']/cp"; // idem …

$lsQuery = "//villes/ville[cp='$lsCp']/nom_ville"; // Nom de la ville dont le cp est égal à …

· Démarche

Recherche de l'élément (le cp) avec XPATH,

Calcul du nombre de résultats,

Récupération du premier élément résultat,

Récupération des valeurs des enfants.

· Autres méthodes et attributs utilisés

	Méthode
	Description

	Int noeuds->length
	Nombre d'éléments d'un tableau de noeuds

	nœuds = parent->childNodes
	Enfants d'un noeud

	String = enfant->textContent
	Valeur d'un nœud

	String = nodeType
	1 = élément; 3 = texte, …

· Script

<?php

// --- domXpath1.php

header("Content-Type: text/html; charset=UTF-8");

if(isSet($_GET['it_cp']))

{

// --

// --- Recherche d'un élément ville via le CP

// --

$dom = new DomDocument();

$dom->preserveWhiteSpace = false;

$dom->load("villes.xml");

// --- Création d'un objet "recherche"

$xpath = new DOMXPath($dom);

$lsCp = $_GET['it_cp'];

$lsQuery = "//ville[cp='$lsCp']/nom_ville";

$noeuds = $xpath->query($lsQuery);

echo "Nombre d'éléments : " . $noeuds->length . "
";

if($noeuds->length == 0) echo "Pas trouvé";

if($noeuds->length != 0)

foreach($noeuds as $noeud) echo "*", $noeud->textContent, "*";
}

?>

<form action="" method="get">

<label>Cp recherché : </label><input name="it_cp" type="text" value="75011" size="5" />

<input type="submit" value="Valider" />

</form>

1.5.9 Rechercher N éléments : starts-with

Même chose que précédemment mais avec un "LIKE" XML (Starts-with).

Plus une boucle sur le résultat.

[image: image14.png]@ Mozilla Firefox M=

Echier Edton Affichage Hstoriqus Marquerpages Outls

Mombre d'éléments : 4
*75012 Paris 12 *
#7501 Paris 1%
*75002 Paris 2 *
*75021 Paris 21 *
Mo de la ville : |Paris

[image: image15.png]@ Mozilla Firefox [B=%]

Echier Edton Affichage Hstoriqus Merquerpages Outls 2

Mombre d'éléments : 0
Pas trouvé
Morm de la ville : |Lille

Requete = "chemin[starts-with(balise, 'valeur')]"

<?php

// --- domXpath2.php

header("Content-Type: text/html; charset=UTF-8");

if (isSet($_GET["it_nom_ville"]))

{

$lsNomVille = $_GET["it_nom_ville"] ;

$dom = new DomDocument();

$dom->preserveWhiteSpace = false;

$dom->load("villes.xml");

// --- Création d'un objet "recherche"

$xpath = new DOMXPath($dom) ;

$lsQuery = "//villes/ville[starts-with(nom_ville,'$lsNomVille')]" ;

$noeuds = $xpath->query($lsQuery);

echo "Nombre d'éléments : " . $noeuds->length . "
";

if($noeuds->length == 0) echo "Pas trouvé";

if($noeuds->length != 0)

foreach($noeuds as $noeud) echo "*", $noeud->textContent, "*";
}

?>

<form action="" method="get">

<label>Nom de la ville : </label><input name="it_nom_ville" type="text" value="Paris" />

<input type="submit" />

</form>

1.5.10 Autres opérateurs XPATH

	Opérateur
	
	Exemple

	!=
	Différent
	$ls_query = "//villes/ville[nom_ville != '$ls_nom_ville']" ;

	>,>=,<,<=
	
	$ls_query = "//villes/ville[cp>'75011']" ;

	
	
	

	and
	ET logique
	$ls_query = "//villes/ville[nom_ville='$ls_nom_ville' and cp='$ls_cp']" ;

	or
	OU logique
	$ls_query = "//villes/ville[nom_ville='$ls_nom_ville' or cp='$ls_cp']" ;

	not
	NON logique
	$ls_query = "//villes/ville[not(nom_ville='$ls_nom_ville')]" ;

	
	
	

	contains
	contient
	$ls_query = "//villes/ville[contains(nom_ville,'$ls_nom_ville')]" ;

	
	
	

	@
	Attribut
	$ls_query = "//bibliotheque/livre[@isbn='$isbn']" ;

Notes :

and, or et not sont en minuscules.

>, >=, <, <= ne fonctionnent qu'avec des valeurs numériques.

Les valeurs sont sensibles à la casse.

Cf aussi SimpleXML.

· Exercice

Rechercher un client via la première lettre de son nom.

1.5.11 Calculer avec XPath->evaluate()

· Objectif

La méthode evaluate() permet de faire des calculs en fonction de critères.

Exemple : calcul du nombre de villes dont le cp commence par le code département saisi ...

[image: image16.png]@ Mozilla Firefox B[EX]

Echier Edton Affichage Hstoriqus Marque-pat

Nombre d'éléments 4
cp:lrs

· Syntaxe

resultat = xpath->evaluate("fonction(chemin[condition]/nœud)" [, nœudContexte])

Exemples de requêtes :

$lsQuery = "sum(//villes/ville[cp>'$lsCp']/cp)" ;

$lsQuery = "count(//villes/ville[cp>'$lsCp'])" ;

$lsQuery = "count(//villes/ville[starts-with(cp, '$lsCp')])" ;

· Script

<?php

// --- domXpathCount.php

header("Content-Type: text/html; charset=UTF-8");

if(isSet($_GET["cp"]))

{

$lsCp = $_GET["cp"];

$dom = new DomDocument();

$dom->load("villes.xml");

$xpath = new DOMXPath($dom);

$lsQuery = "count(//villes/ville[starts-with(cp,'$lsCp')])";

$resultat = $xpath->evaluate($lsQuery);

echo "Nombre d'éléments : $resultat
";

}

?>

<form action="" method="get">

<label>CP : </label><input name="cp" type="text" value="75011" />

<input type="submit" />

</form>

· Exercice

Calculez le nombre de villes.

1.5.12 Supprimer un élément : removeChild()

· Objectif

Suppression d'un élément.

[image: image17.png]@ Mozilla Firefox [B=%]

Echier Edton Affichage Hstoriqus Merquerpages Outls 2

Suppression réalisée et enregistrée
Cp: 14200

· Démarche

Recherche de l'élément.

Si l'élément existe, suppression de l'élément.

	Méthode
	Description

	$racine->removeChild($element)
	Supprime un élément.

· Script

<?php

// --- domVilleSuppression.php

header("Content-Type: text/html; charset=UTF-8");

if(isSet($_GET["cp"]))

{

$cp = $_GET["cp"];

$dom = new DOMDocument;

$dom->load('villes.xml');

$racine = $dom->documentElement;

// --- Récupération de la première ville et suppression

$xpath = new DOMXPath($dom);

$requete = "//villes/ville[cp='$cp']";

$villes = $xpath->query($requete);

// --- Renvoie le ième élement de la liste

if($villes->length > 0)

{

$ville = $villes->item(0);

$racine->removeChild($ville);

$dom->save("villes.xml");

echo "Suppression réalisée et enregistrée";

}

else echo "Aucune ville de ce CP";

}

?>

<form action="" method="get">

<label>Cp : </label><input name="cp" type="text" value="14200" />

<input type="submit" />

</form>

1.5.13 Modifier un élément : replaceChild()

· Objectif

Modification d'un élément. On change le nom de la ville.

· Démarche

Il existe deux techniques :

· Soit par modification de la valeur de l'élément (via nodeValue),

· Soit par remplacement de l'élément (replaceChild()).

	Méthode
	Description

	$racine->replaceChild($nouveauNoeud, $ancienNoeud)
	Remplace un noeud

La première solution est plus légère surtout s'il n'y a qu'un élément à modifier et que l'on connaît sa place.

La deuxième solution nécessite la création de tous les éléments enfant et d'une affectation de valeurs.

· Script

<?php

// --- domVilleModification.php

header("Content-Type: text/html; charset=UTF-8");

if(isSet($_GET["cp"]))

{

$dom = new DOMDocument;

$dom->preserveWhiteSpace = false;

$dom->load('villes.xml');

$dom->formatOutput = true;

$racine = $dom->documentElement;

$cp = $_GET["cp"];

$xpath = new DOMXPath($dom);

$requete = "//villes/ville[cp='$cp']";

$villes = $xpath->query($requete);

// --- Renvoie le ième élément de la liste

if($villes->length > 0)

{

$ancienneVille = $villes->item(0);

//$ancienneVille->lastChild->nodeValue = $_GET["nom_ville"];

$nouvelleVille = $dom->createElement("ville");

$cp = $dom->createElement("cp", $cp);

$nom_ville = $dom->createElement("nom_ville", $_GET["nom_ville"]);

$nouvelleVille->appendChild($cp);

$nouvelleVille->appendChild($nom_ville);

// ---- Replace(nouveauNoeud, ancienNoeud)

$racine->replaceChild($nouvelleVille, $ancienneVille);

echo "Modification réalisée et enregistrée";

$dom->save("villes.xml");

}

else echo "Aucune ville de ce CP";

}

?>

<form action="" method="get">

<label>Cp : </label><input name="cp" type="text" value="14200" />

<label>Nouveau nom : </label><input name="nom_ville" type="text" value="Dives" />

<input type="submit" />

</form>

· Exercice

CRUD sur villesDocument.xml sur la même interface.

Le document XML contient des données situées dans des éléments <ville> avec des éléments pour les valeurs.

1.5.14 Visualiser les valeurs des attributs des balises : attributes

· Objectif

Affichage des valeurs des attributs et des balises. Dans cet exemple c'est la balise <livre> qui comporte l'attribut titre et isbn.

[image: image18.png]dom_attributs.php - Mozilla Firefox
Fichier Edtion ffichage Historique Morque-pages Outls

(2 rttpitocahostiphpicours anldom_atriuts.php || | < -

Valeur de Vafiribut tire - La poursuie du borheur
Valeur de afiributisbn : 12345

Valeur de auteur : Dovglas Kennedy

Valeur de editeur : Pocket

Valeur de cowverture : la_poursuite_du_borheur.jpg
Valeur de site : hitpffwerw. douglas-kennedy. com/
Valeur de email: contact@douglaskennedy. com

Valeur de Vafiribut tire - L'homme qui voulait vivre sa vie

· Démarche

Récupération des éléments ville avec getElementsByTagName.
Récupération des attributs et valeurs d'attribut de livre.

Récupération des nœuds cp et nom.

Récupération des valeurs des éléments enfant.

	Méthode
	Description

	$element->hasAttributes()
	Renvoie True si l'élément possède au moins un attribut.

	$attributs = $element->attributes
	Renvoie la liste des attributs.

Ce tableau à clé comprend le nom de l'attribut sous forme de String et la valeur sous forme d'objet. C'est par la propriété value que l'on va récupérer la valeur.

	$element->getAttribute("attribut")
	Récupère la valeur d'un attribut

· Script

domAttributs.php

<?php

// --- domAttributs.php

$dom = new DomDocument();

$dom->load("bibliotheque_1.xml");

$racine = $dom->documentElement;

$elements = $dom->getElementsByTagName("livre");

// --- Balayage du tableau et donc affichage du contenu ie cp et ville

foreach($elements as $element)

{

if($element->hasAttributes())

{

$attributs = $element->attributes;

foreach($attributs as $attribut => $valeur_att)

print("
Valeur de l'attribut " . $attribut . " : " . $valeur_att->value) ;

}

else print("
Element n'a pas d'attributs") ;

$enfants = $element->childNodes;

foreach($enfants as $enfant)

{

if(strlen(trim($enfant->nodeValue)) !=0) print("
Valeur de " . $enfant->nodeName . " : " . $enfant->nodeValue);

}
}

?>

1.5.15 Ajouter un élément avec des attributs avec DOM

· Objectif

Ajouter un élément DOM avec des attributs.

· Syntaxe

Ajoute un attribut à un élément.

Element->setAttribute("attribut", "valeur");

· Démarche

Créez un élément,

Ajoutez les attributs,

Etc,

Ajoutez l'élément au document.

· Script

<?php

// --- domLivreAjout.php

$dom = new DomDocument();

$dom->preserveWhiteSpace = true;

$dom->formatOutput = true;

$dom->load("bibliotheque_1.xml");

// --- Création d'un élément Livre

$livre = $dom->createElement("livre");

// --- Création des attributs

$livre->setAttribute("titre", "Nana");

$livre->setAttribute("isbn", "1111111");

// --- Création des éléments enfant

$auteur = $dom->createElement("auteur","Zola");

$editeur = $dom->createElement("editeur","Fasquelle");

$couverture = $dom->createElement("couverture","Nana");

$site = $dom->createElement("site","nana.fr");

$email = $dom->createElement("email","zola@free.fr");

// --- Ajout des éléments enfant

$livre->appendChild($auteur);

$livre->appendChild($editeur);

$livre->appendChild($couverture);

$livre->appendChild($site);

$livre->appendChild($email);

// --- Ajout du livre à Bibliotheque ie le niveau racine

$dom->documentElement->appendChild($livre);

// ---- Sauvegarde dans un fichier

$dom->save("bibliotheque_1.xml");

?>

1.5.16 Modifier la valeur d'un attribut avec DOM

Utilisation de setAttribute()

<?php

// --- domLivreModification.php

header("Content-Type: text/html; charset=UTF-8");

if(isSet($_GET["isbn"]))

{

$dom = new DOMDocument;

$dom->load('CopieBibliotheque_1.xml');

$isbn = $_GET["isbn"];

$xpath = new DOMXPath($dom);

$requete = "//bibliotheque/livre[@isbn='$isbn']";

$livres = $xpath->query($requete);

if($livres->length > 0)

{

$livre = $livres->item(0);

$livre->setAttribute("titre", $_GET["titre"]);

$dom->save("CopieBibliotheque_1.xml"); // --- Sauvegarde

echo "Modification réalisée et enregistrée";

}

else echo "Aucun livre avec cet ISBN";

}

?>

<form action="" method="get">

<label>ISBN : </label><input name="isbn" type="text" value="22222" />

<label>Titre : </label><input name="titre" type="text" value="L'homme qui voulait vivre sa vie" />

<input type="submit" />

</form>

· Exercice

CRUD sur villesData.xml sur la même interface.

Le document XML contient des données situées dans des éléments <ville /> avec des attributs pour les valeurs.

1.5.17 Exercice DOM récapitulatif

Créez un document villesNouvelles.xml avec 3 villes.

Ecrivez un script PHP qui ajoute le contenu de villesNouvelles.xml à la table villes.

Cas simple

<?xml version="1.0" encoding="UTF-8"?>

<!-- villesNouvelles -->

<villes>

 <ville>

 <cp>00001</cp>

 <nom_ville>Paris 11</nom_ville>

 </ville>

 <ville>

 <cp>00002</cp>

 <nom_ville>Paris 12</nom_ville>

 </ville>

 <ville>

 <cp>00003</cp>

 <nom_ville>Paris XIX</nom_ville>

 </ville>

</villes>

Cas moins simple

<?xml version="1.0" encoding="UTF-8"?>

<!-- villesNouvelles -->

<villes>

 <ville>

 <cp>00001</cp>

 <nom_ville>Paris 11</nom_ville>

 <site>www.paris.fr</site>

 <photo>paris.jpg</photo>

 <id_pays>033</id_pays>

 </ville>

 <ville>

 <cp>00002</cp>

 <nom_ville>Paris 12</nom_ville>

 <site>www.paris.fr</site>

 <photo>paris.jpg</photo>

 <id_pays>033</id_pays>

 </ville>

 <ville>

 <cp>00003</cp>

 <nom_ville>Paris XIX</nom_ville>

 <site>www.paris.fr</site>

 <photo>paris.jpg</photo>

 <id_pays>033</id_pays>

 </ville>

</villes>

1.6 PHP et XSL(T)

1.6.1 Présentation de XSL(T)

Les feuilles de style XSL prennent en charge la mise en forme des documents XML, et sont comparables aux feuilles de style CSS pour les documents HTML.

XSLT (Extensible Stylesheet Language (XSL) Transformations) est un langage de transformation des documents XML en d'autres documents XML.

C'est un standard défini par le consortium World Wide Web (W3C). Les informations sur le XLST et ses technologies sont disponibles à http://www.w3.org/TR/xslt.

Cette extension est différente de l'extension sablotron qui était distribuée dans les versions de PHP antérieures à la 4.1. A partir de la version 4.1, seule la nouvelle extension XSLT est supportée. Cette extension a été déplacée dans le module PECL et n'est plus intégrée à partir de PHP 5.

A partir de la version 5 le support XSLT est intégré à l'extension XSL.

La version 5 utilise l'extension XSL : extension=php_xsl.dll dans php.ini.

L'objectif de ce paragraphe est d'utiliser les objets et méthodes de l'extension XSLT pour obtenir dynamiquement des contenus de documents XML formatés en fonction d'un choix.

· Le fichier villes.xml

<?xml version="1.0" encoding="utf-8" ?>

<villes>

<ville>

<cp>75012</cp>

<nom_ville>Paris 12</nom_ville>

</ville>

<ville>

<cp>75011</cp>

<nom_ville>Paris 11</nom_ville>

</ville>

<ville>

<cp>75002</cp>

<nom_ville>Paris 2</nom_ville>

</ville>

</villes>

Dans un navigateur un document XML, sans information de style, est affiché ainsi :

[image: image19.png]Mozilla Firefox
Echier Edton Affichage Aler 3 Marque-pages Outls

L1 hitplocalhostiphp/cours xrljvles.xmi

Ce fichier ML ne semble pas avoir dinformation de style hui étant associé.
L'arbre du document est montré ci-dessous,

- <villes>
- <ville>
<cp>T5012/ep>
<nom>Paris 12<om>
<Hille>
- <ville>
<cp>14000</cp>
<nom>Caen<fiom>
<Hille>

En statique on ajoute cet élément au document XML en deuxième ligne.

<?xml-stylesheet href="fichier.xsl" type="text/xsl"?>

· Le fichier villesBase.xsl

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="utf-8"/>

 <xsl:template match="/">

 <html>

 <head><title>Villes en base</title></head>

 <body>

<xsl:for-each select="villes/ville">

<xsl:value-of select="cp"/> -

<xsl:value-of select="nom_ville"/>

</xsl:for-each>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

On insère une référence à la feuille de style XSL en deuxième ligne du document XML :

<?xml-stylesheet href="villesBase.xsl" type="text/xsl"?>

Avec cette feuille XSL l'affichage sera celui-ci :

[image: image20.png]Villes en base - Mozilla Firefox.

Fchier Edtion Affichage Allr 3 Marque-pages

L1 hitpiiocalostiphp/cours xrjvles.xmi

75012 - Paris 12
14000 - Caen
75011 - Pais 11

outls

0O o

· Le fichier villesTableau.xsl
<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="utf-8"/>

 <xsl:template match="/">

 <html>

 <head><title>Villes en tableau</title></head>

 <body>

<table border="1">

<xsl:for-each select="villes/ville">

<tr>

<td><xsl:value-of select="cp"/></td>

<td><xsl:value-of select="nom_ville"/></td>

</tr>

</xsl:for-each>

</table>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

avec

<?xml-stylesheet href="villesTableau.xsl" type="text/xsl"?>

[image: image21.png]Villes en tableau - Mozilla Firefox

Fchier Edtion Affichage Allr 3 Marque-pages

L1 hitpiiocalostiphp/cours xrjvles.xmi

outls

0O o

· Le fichier villesDiv.xsl

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="utf-8"/>

 <xsl:template match="/">

 <html>

 <head>

<title>Villes en division</title>

<style type="text/css">

body{background-color:black; }

div{border:1px white solid; margin:5px; padding:5px; background-color:darkorange; color:white; font-family:Verdana, Arial, Helvetica, sans-serif; font-weight:normal; font-size:12px; }

</style>

</head>

 <body>

<xsl:for-each select="villes/ville">

<div>

<xsl:value-of select="cp"/>

<xsl:value-of select="nom_ville"/>

</div>

</xsl:for-each>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

avec

<?xml-stylesheet href="villesDiv.xsl" type="text/xsl"?>

[image: image22.png]@ villes en division -... |~

Fichier _Ediion_ Affichage_ Historique

1.6.2 PHP et XSL(T)

· Objectif

L'objectif est de fusionner statiquement puis dynamiquement un document XML et un document XSL pour créer un nouveau document XML.

· Démarche

Chargement et importation de la feuille de style.

Chargement du document XML de données.

Transformation du document de données en un autre document XML.

Affichage du résultat.

· Objets et Méthodes

	Objet/Méthode
	Description

	DOMDocument
	Document DOM

	XSLTProcessor
	Processeur XSLT

	Load()
	Chargement d'un document XML; une feuille de style est aussi un document XML

	ImportStyleSheet()
	Importe une feuille de style XSL

	TransformToXML()
	Transforme un document XML en un autre document XML

· Script PHP 5 statique

[image: image23.png]& Villes en division - X

Fichier _Ediion_ Affichage_ Historique

<?php

// --- xslPhpStatique.php

// --- Instanciation d'un DOM et chargement des données

$docXMLData = new DOMDocument();

$docXMLData->load("villes.xml");

// --- Instanciation d'un DOM et chargement du style

$docXSL = new DOMDocument();

$docXSL->load("villesDiv.xsl");

// --- Instanciation d'un XSLT(un processeur) et affectation du XSL

$xslt = new XSLTProcessor();

$xslt->importStyleSheet($docXSL);

// --- Transformation du document XML en un autre document XML, en l'occurrence un document HTML

$destination = $xslt->transformToXML($docXMLData);

// --- Affichage du résultat

echo $destination;

?>

Note : pour enregistrer la destination dans un fichier ajoutez cette ligne :

file_put_contents("villesDiv.html ", $destination);

· Exercice

Créez une liste déroulante (balise <select>) avec trois options : simple, tableau et divisions, pour que l'internaute puisse choisir le mode de présentation du document villes.xml.

[image: image24.png]@ villes en base - Mozi... [/[0

Echier Edton Affichage _ Historiqus 1]

© c xa@

Simple

75012 - Paris 12
75011 - Pais 11
75002 - Paris 2

75021 - Paris 21
44321 - Sablé

1.7 Annexes et Exercices

Le fichier XML de base.

· villesNouvelles.xml

<?xml version="1.0" encoding="UTF-8"?>

<villes>

<ville>

<cp>59000</cp>

<nom_ville>Lille</nom_ville>

</ville>

<ville>

<cp>13000</cp>

<nom_ville>Marseille</nom_ville>

</ville>

<ville>

<cp>33000</cp>

<nom_ville>Bordeaux</nom_ville>

</ville>

</villes>

1.7.1 XML CRUD

· L'interface

[image: image25.png]m(CrudTest - Mozilla Firefox
Fiher Edtion Affichege Hstorique Maraue-pages Ot

Fichier 3L villes xml Champ(s) - cp Valeur(s) 75011
Un

7501 1Paris 11

· Le script xmlCrud.php

· Le script xmlCrudTest.php

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>xmlCrudTest</title>

</head>

<body>

<form action="" method="get">

 <label>Fichier XML : </label><input name="fichier" type="text" value="villes.xml" />

 <label>Champ(s) : </label><input name="champs" type="text" value="cp" />

 <label>Valeur(s) : </label><input name="valeurs" type="text" value="14200" />

 <input type="submit" name="plus" value="+" />

 <input type="submit" name="moins" value="-" />

 <input type="submit" name="visu" value="V" />

 <input type="submit" name="tous" value="Tous" />

</form>

<?php

require_once("xmlCrud.php");

if(isSet($_GET["fichier"])) echo "<hr/>";

// --- AJOUT

if(isSet($_GET["plus"]))

{

return ajouterElement($_GET["fichier"], "villes", $asChamps, $asValeurs);

}

// --- SUPRESSION

if(isSet($_GET["moins"]))

{

echo supprimerElement($_GET["fichier"], "//villes/ville", $_GET["champs"], $_GET["valeurs"]);

}

// --- VISU UN

if(isSet($_GET["visu"]))

{

echo visuUn($_GET["fichier"], "//villes/ville", $_GET["champs"], $_GET["valeurs"]);

}

// --- VISU TOUS

if(isSet($_GET["tous"]))

{

echo visuTous($_GET["fichier"], $_GET["champs"]);

}

?>

</body>

1.7.2 XML vers BD avec DOM (2 éléments).

· Objectif

Insérer les données du fichier nouvelles_villes.xml dans la table Villes.

Il y a des commentaires au niveau racine.

Contraintes : on connaît la structure du fichier XML qui n'a que 2 éléments enfants et celle de la table Villes. Il n'y a pas de commentaires dans les éléments <ville>.

· Document villesNouvelles.xml.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Fichier Calvados -->

<villes>

<!-- La liste des villes -->

 <ville>

 <cp>14201</cp>

 <nom_ville>Caen</nom_ville>

 </ville>

 <ville>

 <cp>14202</cp>

 <nom_ville>Cabourg</nom_ville>

 </ville>

 <ville>

 <cp>14203</cp>

 <nom_ville>Dives</nom_ville>

 </ville>

</villes>

· Script

<?php

// --- domXml2BdV2.php

header("Content-Type: text/html; charset=UTF-8");

mysql_connect("localhost","root","") ;

mysql_select_db("cours") ;

$dom = new DomDocument();

$dom->preserveWhiteSpace = false;

$dom->load("villesNouvelles.xml");

$villes = $dom->getElementsByTagName("ville");

foreach($villes as $noeud)

{

$cp = $noeud->firstChild->textContent;

$nom_ville = $noeud->lastChild->textContent;

$lsInsert = "INSERT INTO villes(cp, nom_ville) VALUES('$cp', '$nom_ville')";

echo "$lsInsert
";

$ok = mysql_query($lsInsert);

if(!$ok) echo mysql_error(), "
";

}

echo "
C'est fini";

?>

1.7.3 XML vers BD avec DOM (4 éléments).

· Objectif

Insérer les données du fichier nouvelles_villes.xml dans la table Villes.

Il y a des commentaires au niveau racine.

Contraintes : on connaît la structure du fichier XML qui a 4 éléments enfants et celle de la table Villes.

· Document villesNouvelles.xml.

<?xml version="1.0" encoding="UTF-8"?>

<!-- villes -->

<villes>

 <ville>

 <cp>00001</cp>

 <nom_ville>Paris 11</nom_ville>

 <site>www.paris.fr</site>

 <photo>paris.jpg</photo>

 <id_pays>033</id_pays>

 </ville>

 <ville>

 <cp>00002</cp>

 <nom_ville>Paris 12</nom_ville>

 <site>www.paris.fr</site>

 <photo>paris.jpg</photo>

 <id_pays>033</id_pays>

 </ville>

 <ville>

 <cp>00003</cp>

 <nom_ville>Paris XIX</nom_ville>

 <site>www.paris.fr</site>

 <photo>paris.jpg</photo>

 <id_pays>033</id_pays>

 </ville>

</villes>

· Script

<?php

// --- domXml2BdV4.php

header("Content-Type: text/html; charset=UTF-8");

mysql_connect("localhost","root","");

mysql_select_db("cours");

$dom = new DomDocument();

$dom->preserveWhiteSpace = false;

$dom->load("villesNouvelles.xml");

$villes = $dom->getElementsByTagName("ville");

foreach($villes as $noeud)

{

$enfants = $noeud->childNodes;

$i = 1;

foreach($enfants as $enfant)

{

if($i==1) $cp = $enfant->textContent;

if($i==2) $nom_ville = $enfant->textContent;

if($i==3) $site = $enfant->textContent;

if($i==4) $photo = $enfant->textContent;

$i++;

}

$lsInsert = "INSERT INTO villes(cp, nom_ville, site, photo) VALUES('$cp', '$nom_ville', '$site', '$photo')";

echo "$lsInsert
";

$ok = mysql_query($lsInsert);

if(!$ok) echo mysql_error(), "
";

}

echo "
C'est fini";

?>
1.7.4 XML vers BD avec DOM. Le problème des commentaires.

· Objectif

Insérer les données du fichier nouvelles_commentees.xml dans la table Villes.

Il y a des commentaires au niveau racine.

Il y a des commentaires dans les éléments <ville>.

Contraintes : on connaît la structure du fichier XML qui n'a que 2 éléments enfants et celle de la table Villes.

· Document villesCommentees.xml.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Commentaire 1 -->

<villes>

<!-- Commentaire 2 -->

 <ville>

 <cp>14201</cp>

 <!-- Commentaire 3 -->

 <nom_ville>Caen</nom_ville>

 </ville>

 <ville>

 <!-- Commentaire 4 -->

 <cp>14202</cp>

 <nom_ville>Cabourg</nom_ville>

 </ville>

 <ville>

 <cp>14203</cp>

 <nom_ville>Dives</nom_ville>

 <!-- Commentaire 5 -->

 </ville>

</villes>

· Script

<?php

// --- domXml2Bd_bis.php

header("Content-Type: text/html; charset=UTF-8");

mysql_connect("localhost","root","");

mysql_select_db("cours");

$dom = new DomDocument();

$dom->preserveWhiteSpace = false;

$dom->load("villesCommentees.xml");

$villes = $dom->getElementsByTagName("ville");

foreach($villes as $noeud)

{

// --- Problème s'il y a des commentaires en premier ou en dernier mais pas au milieu

$cp = $noeud->firstChild->textContent;

if($noeud->firstChild->nodeType == 8)

{

echo "
Commentaire donc KO
";

$cp = $noeud->firstChild->nextSibling->textContent;

echo "
$cp
";

}

$nom_ville = $noeud->lastChild->textContent;

if($noeud->lastChild->nodeName == "#comment")

{

echo "
Commentaire donc KO
";

$nom_ville = $noeud->lastChild->previousSibling->textContent;

echo "
$nom_ville
";

}

$lsInsert = "INSERT INTO villes(cp, nom_ville) VALUES('$cp', '$nom_ville')";

echo $lsInsert, "
";

$ok = mysql_query($lsInsert);

if(!$ok) echo mysql_error(), "
";

}

echo "
C'est fini";

?>

1.7.5 XML vers BD avec DOM en dynamique.

· Objectif

Transférer un fichier XML vers la BD.

[image: image26.png]& Mozilla Firefox
Eichier Edtion Afichage Historigue_ Marque-pages Outls 2
Nom racine : #comment -
Table : villes
Eor : vile
Colonnes : cpnom _ville
INSERT INTO villes(cp,nom_vile) VALUES(75012', Paris 12)

INSERT INTO vills(cp,nom_vile) VALUES(75011, Paris 11)

INSERT INTO villes(cp,nom_vill) VALUES(75002', Paris 2)

INSERT INTO vills(cp,nom_vile) VALUES(75021', Paris 21')

INSERT INTO villes(cp,nom_vile) VALUES(44320','Sablé’)

INSERT INTO villes(cp,nom_vile) VALUES('14200', Divessssss')

Clest fini
villes !

· Démarche

Ce script dynamique nécessite un fichier XML structuré.

Certaines contraintes sont prises en compte. Pas toutes.

Le fichier est structuré comme une table BD (pas d'éléments multi-valués, …).

Le nom du niveau racine doit être identique à celui de la table.

Les noms des éléments de niveau 3 (les données) doivent être identiques aux noms des champs de la table.

Ce sont des problématiques algorithmiques.

L'algorithme principal présenté est le suivant :

Le document existe-t-il ?

Le document contient-il des commentaires ? (on passe au "frère" suivant).

Ensuite on analyse les éléments.

Le script n'insère pas dans une table; il faudrait rajouter la connexion à la base et l'exécution des ordres SQL INSERT qui sont générés.

· Script

<?php

// --- domXmlDyn2Bd.php

header("Content-Type: text/html; charset=UTF-8");

// --- Contraintes de cette solution

// --- 3 niveaux : RACINE, PARENT, ENFANTS (villes, ville, (cp, ...)) par exemple

// --- RACINE = nom de la table; ENFANTS = noms des colonnes

// --- Le nom du niveau RACINE doit être égal au nom de la TABLE

// --- Les noms des COLONNES de la table doivent être égaux

// --- aux noms des éléments ENFANTS (<cp> et <nom_ville> ...)

// --- Attention aux commentaires

// --- Les attributs ne sont pas traités

// --- Donc pour les tests :

// --- Avec fichier inexistant c'est OK

// --- Avec villes.xml c'est OK (Racine = parent)

// --- Avec villesNouvelles.xml c'est OK (présence de commentaires)

// --- Avec bibliotheque_1.xml c'est KO

// --- La table n'existe pas ... <bibliotheque>, il y a des attributs, ...

if(isSet($_GET["it_fichier_xml"]))

{

$fichier = $_GET["it_fichier_xml"];

if(!file_exists($_GET["it_fichier_xml"])) echo "$fichier n'existe pas";

else

{

$dom = new DomDocument();

$dom->preserveWhiteSpace = false;

$dom->load($fichier);

// --- Nom du document ie valeur de l'élément Racine

// --- Le nom de l'élément racine devient le nom de la table

// --- Par exemple VILLES ie niveau Table ... ou un commentaire ...

$elementRacine = $dom->firstChild;

$nomRacine = $elementRacine->nodeName;

// --- Tant que l'élément est un commentaire on passe au suivant

while($nomRacine=="#comment")

{

$elementRacine = $elementRacine->nextSibling;

$nomRacine = $elementRacine->nodeName;

}

// --- Valeur de Racine ou du premier élément non commentaire donc nom de la table

// --- Après le niveau racine on va chercher le premier enfant

// --- qui ne soit pas un commentaire

$elementEnr = $elementRacine->firstChild;

$nomEnr = $elementEnr->nodeName;

while($nomEnr=="#comment")

{

$elementEnr = $elementEnr->nextSibling;

$nomEnr = $elementEnr->nodeName;

}

// --- Valeur de l'élément de niveau ENREGISTREMENT

// --- Par exemple VILLE ie niveau "enregistrement", niveau ENFANT

// --- Donc toutes les villes

$enrs = $dom->getElementsByTagName($nomEnr);

// --- Par exemple cp, nom, ... ie niveau "champ"

// --- Pour éviter de la refaire n fois dans la boucle qui va chercher les valeurs

// --- Récupère le premier élément de la liste des "enregistrements"

// --- Puis ses enfants donc les champs

$enr = $enrs->item(0);

$colonnes = $enr->childNodes;

foreach($colonnes as $colonne) $lsColonnes .= $colonne->nodeName . ",";

$lsColonnes = substr($lsColonnes, 0, strlen($lsColonnes)-1);

// --- Pour chaque "enregistrement" récupération des valeurs

foreach($enrs as $enr)

{

// --- Les éléments de VILLE

$colonnes = $enr->childNodes;

// --- Par exemple cp, nom_ville, ... ie niveau champ + commentaires

$lsValeurs = "";

foreach($colonnes as $colonne)

{

//$lsValeurs .= "'" . htmlentities($colonne->textContent) . "',";

if($colonne->nodeName!="#comment")

{

$lsValeurs .= "'" . mb_convert_encoding($colonne->textContent, "ISO-8859-1") . "',";

}

}

$lsValeurs = substr($lsValeurs, 0, strlen($lsValeurs)-1);

$lsInsert = "INSERT INTO $nomRacine($lsColonnes) VALUES($lsValeurs)";

}

}

echo "
C'est fini";

}

?>

<form action="" method="get">

<input type="text" name="it_fichier_xml" value="villes_commentees.xml" />

<input type="submit" />

</form>

1.7.6 XML vers BD avec SAX.

· Objectif

Insérer les données du fichier villesNouvelles.xml dans la table Villes.

· Démarche

Lecture via SAX.

Il faut repérer les noms des balises à l'ouverture et à la fermeture.

Une balise joue un rôle pivot. C'est la balise principale; celle qui correspond au niveau enregistrement.

A la fermeture de la balise principale on récupère les noms des colonnes et les valeurs et on compose l'ordre INSERT.

· Script

<?php

// --- xml2BdSax.php

header("Content-Type: text/html; charset=UTF-8");

// ----------------------------------

function getBaliseOuvrante($parseur, $nomBalise)

// ----------------------------------

{

global $balisePrincipale;

global $nomColonnes;

global $valeurs;

if($nomBalise == $balisePrincipale)

{

$valeurs = array();

$nomColonnes = array();

}

else $nomColonnes[] = $nomBalise;

return true;

}

// ----------------------------------

function getBaliseFermante($parseur, $nomBalise)

// ----------------------------------

{

global $balisePrincipale;

global $nomColonnes;

global $valeurs;

if($nomBalise == $balisePrincipale)

{

$lsColonnes = "";

$lsValeurs = "";

foreach($nomColonnes as $valeur) $lsColonnes .= $valeur . ",";

$lsColonnes = substr($lsColonnes, 0, strlen($lsColonnes)-1);

foreach($valeurs as $valeur) $lsValeurs .= "'" . $valeur . "',";

$lsValeurs = substr($lsValeurs, 0, strlen($lsValeurs)-1);

$lsInsert = "INSERT INTO villes($lsColonnes) VALUES ($lsValeurs)";

echo "
", $lsInsert;

}

return true;

}

// ----------------------------------

function getValeur($parseur, $texte)

// ----------------------------------

{

global $valeurs;

if(strlen(trim($texte)) > 0) $valeurs[] = $texte;

return true;

}

// ----------------------------------

global $balisePrincipale;

global $nomColonnes;

global $valeurs;

$balisePrincipale = "ville";

$parseurXML = xml_parser_create("UTF-8");

xml_parser_set_option($parseurXML , XML_OPTION_CASE_FOLDING, FALSE);

xml_set_element_handler($parseurXML, "getBaliseOuvrante", "getBaliseFermante");

xml_set_character_data_handler($parseurXML, "getValeur");

$xml = file_get_contents("villes.xml");

xml_parse($parseurXML , $xml) ;

xml_parser_free($parseurXML) ;

?>

Et en dynamique ? cf frameworks

1.7.7 XSLT dynamique

	[image: image27.png]@ villes en tableau - M... [~][]

Echier Edtion Affichage Hstorique

O ¢ » (@[

Tableau [v]

(75012 [Paris 12
(75011 [Paris 11
(75002 [Paris 2

(75021 [Paris 21
| Pov rwoml v

	[image: image28.png]@ villes en division - ... (- /[0

Echier Edton Affichage _ Historiqus 1]

[Divisions v | Envoyer

<!-- xslPhpDyn.php -->

<form action="" method="get">

<select name="lb_choix">

<option value="base">Simple</option>

<option value="tableau">Tableau</option>

<option value="div">Divisions</option>

</select>

<input type="submit" />

</form>

<?php

if(isSet($_GET["lb_choix"]))

{

$style = $_GET["lb_choix"] ;

$docXSL = "villes$style.xsl";

$dom = new DOMDocument();

$xsl = new XSLTProcessor();

$dom->load($docXSL);

$xsl->importStyleSheet($dom);

$dom->load("villes.xml");

echo $xsl->transformToXML($dom);

}

?>

1.7.8 BD vers XML avec DOM

1.7.8.1 Sans création de DTD ni schema

· Démarche

Création du document,

Création des éléments,

Ajout des éléments,

Sauvegarde.

· Script

<?php

// --- bd2XmlDom.php

header("Content-Type: text/html; charset=UTF-8");

$table = "villes";

$fichierDestinationXML = $table . "_0.xml";

// --- Création du XML

$dom = new DomDocument('1.0','UTF-8');

$dom->formatOutput = true; // --- Pour l'indentation

$racine = $dom->createElement($table);

$nomParent = substr($table,0,strlen($table)-1);

mysql_connect("localhost","root","");

mysql_select_db("librairie");

$requete = "SELECT * FROM $table";

$curseur = mysql_query($requete);

while($enr = mysql_fetch_assoc($curseur))

{

$parent = $dom->createElement($nomParent);

foreach($enr as $champ => $valeur)

{

$enfant = $dom->createElement($champ, $valeur);

$parent->appendChild($enfant);

}

$racine->appendChild($parent);

}

$dom->appendChild($racine);

$dom->save($fichierDestinationXML);

echo "C'est fini";

?>

1.7.8.2 Avec création d'une DTD

· Démarche

Voilà un exemple de fichier XML avec sa DTD (villes_1.xml et villes_1.dtd).

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE villes SYSTEM "villes1.dtd">

<villes>

 <ville>

 <cp>69000</cp>

 <nom_ville>Lyon</nom_ville>

 <photo>lyon.jpg</photo>

 <site>www.lyon.fr</site>

 </ville>

 <ville>

 <cp>59000</cp>

 <nom_ville>Lille</nom_ville>

 <photo>lille.jpg</photo>

 <site>www.lille.fr</site>

 </ville>

</villes>

<!ELEMENT villes (ville+)>

<!ELEMENT ville (cp, nom_ville, photo, site)>

<!ELEMENT cp (#PCDATA)>

<!ELEMENT nom_ville (#PCDATA)>

<!ELEMENT photo (#PCDATA)>

<!ELEMENT site (#PCDATA)>

A partir de la table Villes de la BD nous allons faire la même chose (villes_2.xml et villes_2.dtd).

· Création du XML (via DOM),

· Création du fichier DTD (fichier Ascii),

· Modification de la référence vers la DTD (Réouverture du XML en ASCII et replace !!!).

· Script

La création de la référence vers la DTD pose problème.

<?php

// --- bd2XmlEtDtd.php

header("Content-Type: text/html; charset=UTF-8");

$table = "villes";

$fichierDestinationXML = $table . "_2.xml";

$fichierDestinationDTD = $table . "_2.dtd";

// --- Création du XML

$dom = new DomDocument('1.0','UTF-8');

$dom->formatOutput = true; // --- Pour créer l'indentation

$texte = $dom->createTextNode("<!DOCTYPE $table SYSTEM '$fichierDestinationDTD'>");

$dom->appendChild($texte);

$commentaire = $dom->createComment("Document crée à partir de la BD");

$dom->appendChild($commentaire);

$racine = $dom->createElement($table);

$nomParent = substr($table,0,strlen($table)-1);

mysql_connect("localhost","root","");

mysql_select_db("librairie");

$requete = "SELECT * FROM $table";

$curseur = mysql_query($requete);

$liCount = mysql_num_fields($curseur);

$tChamps = array();

for($i=0; $i<$liCount; $i++) $tChamps[$i] = mysql_field_name($curseur,$i);

while($enr = mysql_fetch_assoc($curseur))

{

$parent = $dom->createElement($nomParent);

foreach($enr as $champ => $valeur)

{

$enfant = $dom->createElement($champ,$valeur);

$parent->appendChild($enfant);

}

$racine->appendChild($parent);

}

$dom->appendChild($racine);

$dom->save($fichierDestinationXML);

// --- Création de la DTD

$contenu = "<!ELEMENT $table ($nomParent+)>\r\n";

$Champs = "";

for($i=0; $i<$liCount; $i++) $Champs .= $tChamps[$i] . ",";

$Champs = substr($Champs,0,strlen($Champs)-1);

$contenu .= "<!ELEMENT $nomParent ($Champs)>\r\n";

for($i=0; $i<$liCount; $i++)

{

$contenu .= "<!ELEMENT $tChamps[$i] (#PCDATA)>\r\n";

}

file_put_contents($fichierDestinationDTD,$contenu) or die("Erreur écriture DTD");

// --- Modification de la référence à la DTD dans le XML

$contenu = file_get_contents($fichierDestinationXML) or die("Erreur ouverture");

$motif = "<";

$contenu = str_replace($motif, "<", $contenu);

$motif = ">";

$contenu = str_replace($motif, ">", $contenu);

file_put_contents($fichierDestinationXML,$contenu) or die("Erreur écriture XML");

echo "C'est fini";

?>

1.7.8.3 Avec Schema

Le fichier XML

<?xml version="1.0" encoding="UTF-8"?>

<!--Document XML crée à partir de la BD-->

<villes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="villes3.xsd">

 <ville>

 <cp>13000</cp>

 <nom_ville>Marseille</nom_ville>

 <photo></photo>

 <site></site>

 </ville>

 <ville>

 <cp>78000</cp>

 <nom_ville>Versailles</nom_ville>

 <photo></photo>

 <site></site>

 </ville>

</villes>

Le schéma

Un schéma est un document XML.

<?xml version="1.0" encoding="utf-8"?>

<!--Document XSD crée à partir de la BD-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ville">

<xs:complexType>

<xs:sequence>

<xs:element name="cp" type="xs:string"/>

<xs:element name="nom_ville" type="xs:string"/>

<xs:element name="photo" type="xs:string"/>

<xs:element name="site" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

· Démarche

· Création du XML via DOM,

· Création du XSD via DOM (manipulation des espaces de nom).

· Script

<?php

// --- bd2XmlEtSchema.php

header("Content-Type: text/html; charset=utf-8");

$table = "villes";

$fichierDestinationXML = $table . "_3.xml";

$fichierDestinationXSD = $table . "_3.xsd";

// --- Création du XML

$dom = new DomDocument('1.0','UTF-8');

$dom->formatOutput = true; // --- Pour créer l'indentation

$commentaire = $dom->createComment("Document XML crée à partir de la BD");

$dom->appendChild($commentaire);

$racine = $dom->createElement($table);

$racine->setAttribute("xmlns:xsi","http://www.w3.org/2001/XMLSchema-instance");

$racine->setAttribute("xsi:noNamespaceSchemaLocation","villes3.xsd");

$nomParent = substr($table,O,strlen($table)-1);

mysql_connect("localhost","root","");

mysql_select_db("librairie");

$requete = "SELECT * FROM $table WHERE cp NOT LIKE'75%'";

$curseur = mysql_query($requete);

$liCount = mysql_num_fields($curseur);

$TChamps = array();

for($i=0; $i<$liCount; $i++) $TChamps[$i] = mysql_field_name($curseur,$i);

while($enr = mysql_fetch_row($curseur))

{

$parent = $dom->createElement($nomParent);

for($i=0; $i<$liCount; $i++)

{

$enfant = $dom->createElement($TChamps[$i], $enr[$i]);

$parent->appendChild($enfant);

}

$racine->appendChild($parent);

}

$dom->appendChild($racine);

$dom->save($fichierDestinationXML);

unset($dom);

// --- Création du schema

$schema = new DomDocument('1.0','UTF-8');

$schema->formatOutput = true; // --- Pour créer l'indentation

$commentaire = $schema->createComment("Document XSD crée à partir de la BD");

$schema->appendChild($commentaire);

$xsRacine = $schema->createElementNS("http://www.w3.org/2001/XMLSchema","xs:schema","");

$xsParent = $schema->createElementNS("http://www.w3.org/2001/XMLSchema","xs:element");

$xsParent->setAttribute("name",$nomParent);

$xsComplexType = $schema->createElementNS("http://www.w3.org/2001/XMLSchema","xs:complexType");

$sequence = $schema->createElementNS("http://www.w3.org/2001/XMLSchema","xs:sequence");

for($i=0;$i<$liCount;$i++)

{

$enfant = $schema->createElementNS("http://www.w3.org/2001/XMLSchema","xs:element");

$enfant->setAttribute("name",$TChamps[$i]);

// --- Il faudrait aller chercher le type dans la metabase

// --- cf curseur = mysql_query("SHOW COLUMNS FROM table")

// --- et mysql_field_type(curseur,i)

$enfant->setAttribute("type","xs:string");

$sequence->appendChild($enfant);

}

$xsComplexType->appendChild($sequence);

$xsParent->appendChild($xsComplexType);

$xsRacine->appendChild($xsParent);

$schema->appendChild($xsRacine);

$schema->save($fichierDestinationXSD);

echo "C'est fini";

?>

1.7.9 XML vers BD avec lecture de la DTD

Première approche : lecture d'une DTD et comparaison avec une structure de table

<?php

//<!-- Commentaire 1, il peut y avoir plusieurs lignes de commentaires -->

//<!ELEMENT villes (ville+)>

//<!-- Commentaire 2, il peut y avoir plusieurs lignes de commentaires -->

//<!ELEMENT ville (cp, nom_ville, photo, site)>

//<!ELEMENT cp (#PCDATA)>

//<!ELEMENT nom_ville (#PCDATA)>

//<!ELEMENT photo (#PCDATA)>

//<!ELEMENT site (#PCDATA)>

// ------------------------------

function getTableDTD($fichierDTD)

// ------------------------------

{

$j = 0;

if(!file_exists($fichierDTD)) die("Le fichier $fichier n'existe pas !");

// --- Lecture du fichier DTD dans un tableau

$t = file($fichierDTD);

// --- Parcours du tableau

for($i=0; $i<count($t); $i++)

{

$table = htmlentities($t[$i]);

// --- Si on trouve ELEMENT

if(ereg("ELEMENT", $table))

{

$posEspace = strpos($table, " ");

$table = trim(substr($table, $posEspace + 1));

$posEspace = strpos($table, " ");

$table = trim(substr($table, 0, $posEspace));

$j++;

// --- Si c'est le première ligne trouvée avec ELEMENT

// --- LE PREMIER ELEMENT CONTIENT LA RACINE DU XML

if($j = 1) return trim($table);

}

}

return "Elément racine non trouvé";

}

// ------------------------------

function getColonnesDTD($fichierDTD)

// ------------------------------

{

$j = 0;

if(!file_exists($fichierDTD)) die("Le fichier $fichier n'existe pas !");

// --- Lecture du fichier DTD dans un tableau

$t = file($fichierDTD);

// --- Parcours du tableau

for($i=0; $i<count($t); $i++)

{

$colonnes = htmlentities($t[$i]);

// --- Si on trouve ELEMENT

if(ereg("ELEMENT", $colonnes))

{

$posParenthese = strpos($colonnes, "(");

$colonnes = substr($colonnes, $posParenthese + 1);

$posParenthese = strpos($colonnes, ")");

$colonnes = substr($colonnes, 0, $posParenthese);

$j++;

// --- Si c'est la deuxième ligne trouvée avec ELEMENT

// --- LE DEUXIEME ELEMENT CONTIENT LES ENFANTS DU XML EN-DESSOUS DU PARENT

// --- QUI EST ENFANT DE LA RACINE

if($j > 1)

{

$colonnes = ereg_replace(" ","",$colonnes);

return $colonnes;

}

}

}

return "Colonnes non trouvées";

}

// ------------------------------

function getTableMySQL($serveur, $ut, $mdp, $bd, $table)

// ------------------------------

{

$lbTrouve = false;

mysql_connect($serveur, $ut, $mdp);

mysql_select_db($bd);

$curseur = mysql_query("SHOW TABLES");

while($enr = mysql_fetch_row($curseur))

if($enr[0] == $table) $lbTrouve = true;

mysql_free_result($curseur);

mysql_close();

return $lbTrouve;

}

// ------------------------------

function getColonnesMySQL($serveur, $ut, $mdp, $bd, $table)

// ------------------------------

{

$lsColonnes = "";

mysql_connect($serveur, $ut, $mdp);

mysql_select_db($bd);

$curseur = mysql_query("SHOW COLUMNS FROM $table");

while($enr = mysql_fetch_row($curseur))

{

$lsColonnes .= $enr[0] . ",";

}

$lsColonnes = substr($lsColonnes, 0, strlen($lsColonnes) - 1);

mysql_free_result($curseur);

mysql_close();

return $lsColonnes;

}

// --- TESTS

// --- Récupération de la racine du XML via la DTD

$lsTableDTD = getTableDTD("villes_1.dtd");

echo "
Table selon DTD : $lsTableDTD";

// --- Récupération des balises enfants du XML via la DTD

$lsColonnesDTD = getColonnesDTD("villes_1.dtd");

echo "
Colonnes selon DTD : $lsColonnesDTD";

// --- Recherche d'une table de même nom dans la BD

$lbTableExiste = getTableMySQL("localhost","root","","librairie",$lsTableDTD);

echo "
Table selon MySQL : $lbTableExiste";

// --- Si la table existe dans la BD alors

if($lbTableExiste)

{

// --- Récupération de la liste des colonnes dans la table SQL

$lsColonnesMySQL = getColonnesMySQL("localhost","root","","librairie",$lsTableDTD);

// --- Comparaison de la liste des colonnes

if($lsColonnesDTD == $lsColonnesMySQL)

{

echo "
Correspondance parfaite des colonnes";

// --- Alors on transfère le contenu du XML dans la table

// --- Soit via SAX soit via DOM

// --- cf scripts précédents

$lsValeurs = "";

$lsInsert = "INSERT INTO $lsTableDTD($lsColonnesDTD) VALUES ($lsValeurs)";

echo "
$lsInsert";

}

else echo "
Pas de Correspondance des colonnes";

}

?>

1.7.10 XML vers BD avec lecture du Schema

1.7.11 Une classe DAO_XML

Cf IDAO de POO.

1.7.12 PHP, XML et RSS

Cf le support RSS.

1.7.13 PHP, XML et WebServices

Cf le support Services Web.

© Pascal Buguet
Imprimé le 5 mai 2010
Page 66

