Corrigé du EXERCICES - algorithmique - ACTIONS ITÉRATIVES
Exercice 1

Trouver la valeur des variables x, y et z à l’issue des algorithmes suivants. Ecrire l’état des variables à l’issue de chaque action.

a - début

x  0;

y  5;

z  1;

tantque x < y faire

début

z  z * y;

x  x + 1

fin

fin;

b - début

x  0; y  5;

tantque x < y faire

début

x  x + 1;

y  y + x

fin

fin

[image: image1.wmf]8

2

6

1

5

0

11

3

y

x

8

2

6

1

5

0

11

3

y

x

y croît plus vite que x : x < y ne sera jamais vérifié (le programme boucle
Exercice 2

a - Ecrire un algorithme itératif qui calcule la somme des entiers de 1 à n.

Parcours d'une séquence de longueur fixe

[image: image2.wmf]somme

1

2

i

i

-

1

n

somme

¬

somme + i

…

…

…

…

Fonction somme(n: entier) (entier

lexique

i: entier

début

somme  0;

pour i allant de 1 à n faire

somme  somme + i;

fin

b - Ecrire un algorithme itératif qui calcule la somme des entiers impairs de 1 à n.

Parcours d'une séquence de longueur fixe

[image: image3.wmf]si i impair alors

somme_impair

¬

somme_impair + i

somme_impair

1

2

i

i

-

1

n

…

…

…

…

Fonction somme_impair(n: entier) (entier

lexique

i: entier

début

somme_impair 0;

pour i allant de 1 à n faire

si i mod 2 = 1 alors

somme_impair somme_impair + i;

fin

Autre solution :

Fonction somme_impair(n: entier) (entier

lexique

i: entier

début

somme_impair 0;

pour i allant de 1 à n pas 2 faire

somme_impair somme_impair + i;

fin

Exercice 3

Ecrire un algorithme qui calcule le montant capitalisé après n années à un taux d'intérêt taux à partir d'un capital initial C (on suppose qu'on ne dispose que des opérateurs * et +).

Parcours d'une séquence de longueur fixe

[image: image4.wmf]capital

capital

¬

capital x (1 + taux)

1

2

i

i

-

1

n

…

…

…

…

Fonction capital(c: réel, taux: réel, n: entier) (réel

lexique

i: entier

début

capital c;

pour i allant de 1 à n faire

capital capital * (1 + taux);

fin

Exercice 4

Ecrire un algorithme qui calcule la factorielle du nombre n. On rappelle que la fonction factorielle (notée !) est calculée comme suit:

SYMBOL 183 \f "Symbol" \s 10 \h 0! = 1

SYMBOL 183 \f "Symbol" \s 10 \h n SYMBOL 179 \f "Symbol" 1, n! = 1 x 2 x ... x (n - 1) x n

Parcours d'une séquence de longueur fixe

[image: image5.wmf]fact

fact

¬

fact x i

1

2

i

i

-

1

n

…

…

…

…

Fonction fact(n: entier) (entier

lexique

i: entier

début

fact  1;

pour i allant de 1 à n faire

fact  fact * i;

fin

Exercice 5

Ecrire un algorithme qui demande à l'utilisateur n (n connu) nombres, et affiche leur produit.

Parcours d'une séquence de longueur fixe

[image: image6.wmf]prod

lire(x);

prod

¬

prod * x;

1

2

i

i

-

1

n

…

…

…

…

action produit(n: entier)

lexique

i, x, prod: entier

début

prod  1;

pour i allant de 1 à n faire

début

lire(x);

prod  prod * x;

fin;

écrire("produit: " , prod);

fin

Exercice 6

Ecrire un algorithme qui demande à l'utilisateur n (n connu) nombres, et en affiche leur max. et leur min.

Parcours d'une séquence de longueur fixe

[image: image7.wmf]min

max

lire(x);

si x > max alors max

¬

x;

si x < min alors min

¬

x;

1

2

i

i

-

1

n

…

…

…

…

action min_max(n: entier)

 lexique

i, x, min, max: entier

début

min  +(;

max  -(;

pour i allant de 1 à n faire

début

lire(x);

si x < min alors min (x;

si x > max alors max (x;

fin;

si n > 0 alors

écrire("min :", min, " max : ", max)

sinon écrire("min et max impossibles à calculer")

fin

Exercice 7

Ecrire un algorithme qui demande à l'utilisateur n (n connu) nombres et affiche leur somme et leur moyenne.

Parcours d'une séquence de longueur fixe

[image: image8.wmf]somme

lire(x);

somme

¬

somme + x;

1

2

i

i

-

1

n

…

…

…

…

la moyenne peut être calculée après le parcours de la séquence
action somme_moyenne(n: entier)

lexique

i, x, somme: entier

début

somme  0;

pour i allant de 1 à n faire

début

lire(x);

somme  somme + x;

fin;

écrire("somme : ", somme);

si n > 0 alors

écrire("moyenne :" , somme/n);

fin

Exercice 8

Ecrire un algorithme qui demande à l'utilisateur n (n connu) nombres et affiche le nombre de fois où l’utilisateur a rentré le nombre 10.

Parcours d'une séquence de longueur fixe

[image: image9.wmf]nombre_10

lire(x);

si x = 10 alors

nombre_10

¬

nombre_10 + 1;

1

2

i

i

-

1

n

…

…

…

…

action calcule_nombre_10(n: entier)

lexique

i, x, nombre_10: entier

début

nombre_10  0;

pour i allant de 1 à n faire

début

lire(x);

si x = 10 alors

nombre_10  nombre_10 + 1;

fin;

écrire("nombre de 10: ", nombre_10);

fin

Exercice 9

Ecrire un algorithme qui, de manière répétitive, demande à l'utilisateur un nombre entier positif et affiche le carré de ce nombre. Cette opération est répétée jusqu’à ce que l’utilisateur entre le nombre 0.

Parcours d'une séquence de longueur variable

Traitement itératif :

[image: image10.wmf]1

2

i

i

-

1

n

…

…

…

…

condition d’arrêt : x = 0
action affiche_carres(n: entier)

lexique

x: entier

début

x  1;

tant que x (0 faire

début

lire(x);

si x (0 alors ecrire(x*x);

fin;
fin;

Autre solution :

Traitement itératif :
[image: image11.wmf]écrire(x*x);

lire(x);

1

2

i

i

-

1

n

…

…

…

…

x

Condition d’arrêt : x = 0

action affiche_carres(n: entier)

lexique

x: entier

début

lire(x);

tant que x (0 faire

début

ecrire(x*x);

lire(x);

fin;
fin;

Exercice 10

Ecrire un algorithme qui, de manière répétitive, demande à l'utilisateur un nombre entier. Cette opération est répétée jusqu’à ce que l’utilisateur entre un nombre inférieur au précédent nombre entré. On affiche alors les deux derniers nombres entrés.

Parcours d'une séquence de longueur variable

Traitement itératif :
[image: image12.wmf]prec

¬

x;

lire(x);

1

2

i

i

-

1

n

…

…

…

…

prec

i

-

2

Condition d’arrêt : x < prec
action supérieur_précédent

lexique

x, prec: entier

début

lire(x);

prec (x-1;

tant que x (prec faire

début

prec (x;

lire(x);

fin;

écrire("deux derniers nombres : ", prec, " ", x);

fin;

Autre solution :

action supérieur_précédent

lexique

x, prec: entier

début

lire(prec);

lire(x);

tant que x (prec faire

début

prec (x;

lire(x);

fin;

écrire("deux derniers nombres : ", prec, " ", x);

fin;

Exercice 11

Ecrire un algorithme qui, de manière répétitive, demande à l'utilisateur un nombre entier. Cette opération est répétée jusqu’à ce que ce l’utilisateur entre le nombre 0. Si au bout de 10 nombres entrés, l’utilisateur n’a toujours pas entré 0, l’algorithme affiche le message: « vous n’avez pas entré 0 » et s’arrête. Dans le cas contraire, il affiche le message: « vous avez entré 0 » et s’arrête.

Recherche dans une séquence de longueur variable

Traitement itératif :
[image: image13.wmf]lire(x);

i

¬

i+1;

1

2

i

i

-

1

n

…

…

…

…

i

-

2

i

-

1 nombres lus

Condition d’arrêt : i = 10 ou x = 0
action différent_0

lexique

i, x: entier

début

lire(x);

i (1;

tant que i (9 et x (0 faire

début

lire(x);

i (i + 1; {quand on a lu 10 nombres, i vaut 10}

fin;

{i = 10 ou x = 0}

si x = 0 alors

écrire("vous avez entré 0");

sinon écrire("vous n’avez pas entré 0");
);

fin;

Exercice 12

Soient a, b, c trois nombres consécutifs dans une séquence de nombres, on dit que b est un « pic » si b > a et b > c. nombres, on dit que b est un « creux » si b < a et b < c.

Ecrire un algorithme qui demande à l'utilisateur n (n connu supérieur ou égal à 3) nombres et affiche le nombre de pics et de creux dans la séquence

parcours d’une séquence de longueur fixe

[image: image14.wmf]lire(x);

si x < xp1 et xp1 > xp2 alors

nbpic

¬

nbpic + 1;

si x > xp1 et xp1 < xp2 alors

nbcreux

¬

nbcreux +1;

xp2

¬

xp1;

xp1

¬

x;

1

2

i

i

-

1

n

…

…

…

…

i

-

2

xp1

xp2

action pic_creux(n: entier)

lexique

i, xp1, xp2, x, nbpic, nbcreux: entier

début

 nbcreux (0 ;

 nbpic (0 ;

lire(xp2);

lire(xp1);

pour i allant de 1 à n-2 faire

début

lire(x);

si x < xp1 et xp1 > xp2 alors nbpic (nbpic + 1;

si x > xp1 et xp1 < xp2 alors nbcreux (nbcreux + 1;

xp2  xp1;

xp1  x;

fin;

écrire("nombre de pics : ", nbpic, " - nombre de creux : ", nbcreux);

fin

lire(x);

si x ≠ 0 alors

 écrire(x*x)

 écrire(x*x);

