Correction Devoir surveillé N°1
Electromagnétisme 2005/2006

Exercice N°1

1. Déterminons la direction du champ électrique en utilisant les règles de symétrie :
Comme le cylindre est supposé infini ( h>>b) ; les plans  
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 sont deux plans de symétrie, donc le champ est dirigé suivant l’intersection de ces deux plans soit 
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Déterminons les coordonnées dont dépend le champ électriques :

· Le système est invariant par rotation autour de Oz donc E ne dépend pad de 
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· Le système est invariant par translation suivant Oz donc E ne dépend pad de z

Donc :                          
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2. On a d’après les relations de continuité :  
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Or au voisinage de la surface de séparation entre le diélectrique est le vide, le champ électrique se réduit a sa composante tangentielle c-à-d 
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. Comme cette composante est continue donc  
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3. Comme on a un  mélange de charge libre et de charge de polarisation, pour 

calculer le champ électrique, il est plus simple de déterminer d’abord le champ D qui ne dépend que des charge s libres :
on a :                                                                    
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Surface de  Gauss est un cylindre de hauteur h et de rayon r ( a < r < b ). On a donc :
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Car E est le même dans les deux milieux. (N.B  le calcul de l’intégrale se fait sur la moitié d’un cylindre)

Donc :    
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La charge libre intérieur à la surface de Gauss est : 
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Avec 
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 est la densité de charge libre la moitié qui contient le diélectrique.
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 est la densité de charge libre la moitié qui contient le vide.

Donc :
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Déterminons E en fonction de U, a et b, pour cela calculons la circulation de E entre les deux conducteurs :
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D’où                                                                 
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4. Expression de la polarisation :

· Dans le vide P = 0

· Dans le diélectrique : 
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Expressions du vecteur déplacement électrique :

· Dans le vide :  
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· Dans le diélectrique : 
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5. Densité de charge de polarisation :

· Surface r = a :    dans le vide 
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                                  Dans le diélectrique 
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· Surface r = b:    dans le vide 
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                                  Dans le diélectrique 
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6. La somme des charges de polarisation :
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Exercice N°2

1) Calcul du vecteur excitation magnétique :

On a dans ce cas un mélange de courant libre et de courant d’aimantation mais la circulation de H ne dépend que des courants libres.

Direction de H :  On utilise les règles de symétrie : Tout plan 
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2) En déduire B :
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En déduire l’aimantation M. Comme le milieu est un ferro doux, on a 
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3) Soit I’ le courant qui fournit le même champ si le ferro est remplacé par le vide, on aura donc :
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4) Calcul de l’énergie magnétique du torre :

On a                                       
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5) Déterminons l’expression du champ magnétique dans la coupure
Comme la circulation de H ne dépend que des courants libres et on a dans le ferro 
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Donc :
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Exercice 3
1) Densités de charges de polarisation surfacique 

On a   
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2) a) Expression du potentiel crée par un dipôle élémentaire :
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b) on a 
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c) J est un champ électrique fictif crée par un plan charge avec une densité de charge uniforme 
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d’où le calcul de J se déduit facilement par le th de Gauss : 
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3) a) En déduire V

On a                                                                                
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b) on a 
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c) Le plan polarisé est équivalent à un condensateur plan chargé avec une densité 
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. Or le champ à l’extérieur d’un condensateur plan infini est nul, ceci explique la valeur trouvée.
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