
[image: image8.wmf]Test 1 Sending Rate

0

100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

P

TABLE OF CONTENTS

	
	Page

	Abstract………………………………………………………….……………………
	3

	
	

	1. Introduction……………………………………………………………….……….
	4

	 Table 1: Features of Internet Protocols……………………………….……….
	6

	
	

	2. Literature Review…………………………………………….…………...……….
	9

	 2.1 Multimedia on the Internet………………………………………..……….
	9

	 2.1.1 Real Audio……………………………………………………….
	9

	 2.1.2 Windows Media Player………………………………………….
	10

	 2.2 TCP……………………………………………………………….……….
	10

	 2.2.1 Segment………………………………………………….……….
	12

	 Table 2: TCP header…………………………………………..……….
	13

	 2.2.2 Connections……………………………………………..……….
	15

	 2.2.3 Window Management……………………….…………..……….
	16

	 2.2.4 Congestion Control………………………….…………..……….
	17

	 Graph 1: An example of the Internet congestion algorithm……………
	19

	 2.2.5 Timers……………………………………….…………..……….
	19

	 2.2.6 Problems with Streaming Applications and TCP……….……….
	21

	 2.3 UDP……………………………………………………………….……….
	22

	 2.4 Attempts at Multimedia Protocols………………………………..……….
	24

	 Diagram 1: RSVP Makes Reservations……………………….……….
	25

	 Diagram 2: Reservation Properties…………………………………….
	26

	 Diagram 3: RTP Packet Header……………………………….……….
	27

	 2.4.1 TFRC…………………………………………………….……….
	29

	 2.5 Routers…………………………………………………………………….
	33

	 2.6 Linux………………………………………………………….……….
	35

	 2.7 NistNet…………………………………………………………………….
	36

	
	

	3. Methodology…………………………………………………………..…………
	38

	 3.1 Java-Based TFRC…………………………………………………………..
	38

	 Diagram 4: Sample Run of an Application using Java-Based TFRC Protocol...
	41

	 3.2 TFRC Test Application…………………………………………………….
	42

	 3.3 Experimentation…………………………………………………………….
	43

	 3.4 Network Emulation Setup…………………………….……………………
	44

	 Diagram 5: The Test Environment…………………………………….……….
	45

	
	

	4. Results and Analysis……………………………………………………………….
	46

	 Table 3: Summary of Test Results
	48

	 Graph 2: Test 1 Sending Rate
	49

	 Graph 3: Test 2 Sending Rate
	50

	 Graph 4: Test 3 Sending Rate
	51

	 Ping Test………………………………………………………………………..
	52

	 TFRC Round Trip Time Results……………………………………………….
	52

	
	

	5. Conclusions……………………………………………………………….……….
	53

	
	

	6. Future Work……………………………………………………………………….
	55

	
	

	References……………………………………………………………………………
	57

	
	

	Work Cited…………………………………………………………………………...
	61

	
	

	Appendix A: JAVA-Based TFRC Implementation.…………………………………
	i

	
	

	Appendix B: TFRC Audio Application………………………………………………
	xxix

	
	

	Appendix C: Test Run Data…………………………………………………………..
	xxxviii

	
	

	Appendix D: Result Graph…………………………………………………………...
	xlii

	
	

Abstract:

Transmission Control Protocol, TCP, and User Datagram Protocol, UDP, are inadequate for multimedia streaming on the Internet. TFRC eliminates TCP's drastic degradations in quality during network congestion by using an equation that determines its transmission rate and unlike UDP, TFRC implements “TCP-Friendly” congestion control to share bandwidth fairly. We implemented TFRC in Java and ran experiments on a WAN test-bed. We found TFRC excels in its overall performance of quality and fairness for multimedia streaming.

Chapter 1

Introduction

The Internet was developed for the speedy transfer of data over long distances. It quickly began to offer more elaborate services such as search engines and maps as data protocols progressed. Now the transfer of audio over the Internet is also becoming popular. Many groups that offer services such as video/audio conferencing, music, and live newscasts or shows are in the process of developing a protocol that suit the needs of audio transfer. At this point in audio protocol development, there are several issues that need to be addressed. Transfer of real-time audio/video data requires much higher bandwidth that cannot be guaranteed or predicted in a congested network. The current protocols result in jumpy data streams. The quality of streaming data is greatly affected by bandwidth availability, receiver buffer size, and application buffer size1. Another issue of quality is audio sound, which is determined by the type of audio being transferred. The required caliber of transmission is strictly dependent on the type of media being listened to. Its quality depends on what the listener perceives is needed for that type of audio genre. For instance, real-time radio does not require as much audio quality as a real-time music competition where listeners would vote on the best performers.

The dominant Internet protocol is TCP, Transmission Control Protocol. It provides three features, which may not necessarily be useful or desirable for multimedia applications. The first feature is packet sequencing, which sorts packets in order of arrival and indicates to the server which packets have been lost. It also guarantees reliability, by retransmitting data that has not been acknowledged by the client. This proves useless for streaming audio since lost or late arrivals retransmitted data cannot be utilized. It also provides flow control; when the network is congested, all clients using TCP slowly decrease their use of bandwidth. This is known as the "good neighbor policy," also usually undesirable for multimedia applications the way TCP implements it, since decreasing the bandwidth in the event of a congested network substantially decreases the quality in real-time audio transfer by creating drastic peaks in the transmission rate.3

Another protocol called User Datagram Protocol, UDP, is an alternative that is used for most streaming multimedia applications today. This protocol does not provide reliability or flow control. For these reasons, it does not adequately address the issues that audio applications on the Internet require.

The development of web-audio technology is taking two paths. One of which is digital-audio data compression. It will allow more data to be transferred through smaller bandwidth. The other area is streaming multimedia. It aims to use the Internet for real-time audio/video, which requires uninterrupted transfer of bits.5

	[image: image1.wmf]Project Number: 2CS

-

MLCMP00

Java

-

Based TFRC Protocol for Streaming Multimedia

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelo

r of Science

by

Asima Silva

Patrick Joseph Dato

-

on Stevens

Kevin Thorley

Date: Jan 10, 2001

Approved:

Professor Mark Claypool, Major Advisor

Features:
	Packet Sequencing
	Reliability/ Retransmission(Undesirable for Streaming Multimedia)
	Best Effort Delivery

(Desirable for Streaming Multimedia)
	Flow Control: "good neighbor policy"

(Desirable for the Internet)

	[image: image2.wmf]Test 1 Sending Rate

0

100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

P

[image: image3.wmf]Test 2 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

Protocols:

	
	
	
	

	[image: image4.wmf]Test 3 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

35

Time (sec)

Packets Sent

TCP

TFRC

UDP

[image: image5.jpg][) eommies s sorver

=] 192.166.2.2 / 192.168.2.1

192.168.2.0 Subnet

Address / Gateway

192.168.2.1

Computers Have B DINO / router / NIST Net
pentium 133

64 MB RAM —

1.2 GB HD

10 BaseT Dlink e, SR .

RedHat Linux 6.2

192.168.1.0 Subnet

C] sansan / ciient

=| Hopiden 2] 192.068.0x1

[image: image6.wmf]Test 3 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

35

Time (sec)

Packets Sent

TCP

TFRC

UDP

[image: image7.wmf]Test 2 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

TCP
	
	
	
	

	UDP
	
	
	
	

	TFRC
	
	
	
	

Many applications such as phone conversations on the Internet, movies, radio stations, MP3’s, RealAudio, and online conferences use streaming multimedia protocols. A variety of audiences use these many services including college students, children, teachers, businessmen, and just about any other Internet user. Not only is multimedia used in specific applications, but many web pages include audio files to enhance their appeal and attract more users. Live shows on the Internet are also becoming popular. In all these situations, there is a need for a better multimedia protocol. This is where TFRC comes in.

Table 1: Features of Internet Protocols4
TCP-Friendly Rate Control, TFRC, proves to be a better multimedia protocol than the dominant Internet protocols today. While only being a proposed protocol, and thus not yet implemented in any of today's commercial Internet applications, it has the possibility of becoming the streaming standard. Since the current Internet protocols were not intended for streaming, they do not offer the features that streaming multimedia applications need. Comparing the protocols in Table 1, it is clear that TCP and UDP are inadequate as multimedia protocols. TCP is undesirable for streaming multimedia because of its retransmission feature and UDP is undesirable for the Internet because it lacks a flow control policy. A streaming multimedia protocol for the Internet requires a combination of features that TCP and UDP offer: packet sequencing, best-effort delivery and flow control. TFRC combines the advantages of the current Internet protocols and the features streaming multimedia implementations require.

Another issue that TFRC and other new audio protocols are aiming to solve is reliability. Streaming multimedia requires the rate of audio data transfer to remain relatively the same. Unfortunately, the quality of service over the Internet varies because network congestion determines the rate of transfer and packet arrival.

Interestingly, a possible future issue is accessibility and portability. In most cases, using the Internet today requires a computer with access to a phone line. In order to increase the Internet multimedia consumption as there are advances in computer and communication hardware, audio capabilities must remain as portable in the future as they are today by concurrently advancing protocols as well.2

As part of the streaming multimedia development path, TFRC is a promising solution. It addresses the issues that were raised for TCP and UDP with respect to web-audio. One issue is the implementation of the good neighbor policy. TFRC is TCP-friendly because in the event of network congestion, it reduces its window size giving other applications a fair chance to use available network bandwidth without drastically changing the transmission rate like TCP does.

After implementing the TFRC protocol and asimple audio application, the performance of the three protocols were compared under the same network conditions. Using the data from these tests, the three protocols were compared to the percentage packet loss, transmission time, and standard deviation for minimal quality variations. Overall, TFRC proved to be a superior multimedia protocol.

Students, researchers, and multimedia protocol developers will probably find our implementation and conclusions helpful and interesting. Since TFRC has not been implemented, experiments such as ours will determine its survival and its potential in becoming a leading multimedia streaming protocol. Our findings will allow for future modifications to be made to the TFRC protocol with the goal of improving its performance; thus making it a truly viable replacement for TCP and UDP in the use of Internet-based multimedia streaming applications. TFRC's bandwidth fairness, its smooth standard deviation, and its congestion prevention strategy make it worth looking into as a replacement today. Future improvements can only make it a better protocol.

Chapter 2

Literature Review
2.1 Multimedia on the Internet

2.1.1 Real Audio

RealAudio, developed by Progressive Networks, is one of the first and most widely used streaming multimedia program on the Internet. It is used by hundreds of organizations ranging from radio and TV stations to news and financial services, downloaded by more than 8 million individuals6 to disseminate multimedia feeds over the Internet. RealAudio is considered a standard for multimedia in the Internet industry.

RealAudio uses a proprietary bi-directional, real-time, time-based protocol to communicate between a client/server architecture using UDP for its data stream and TCP for its control stream. The data stream is used to transmit sound/image data and control stream to negotiate proper bandwidth and track lost packets as well as the controls such as rewind, pause, stop, play, etc.

RealAudio uses a proprietary compression algorithm. The compression algorithm compresses at a rate of 8:1 for CD audio type quality and 64:1 for AM radio type quality.7 A compressed RealAudio clip can send at any compression rate lower than it, allowing for different bandwidths to transfer information. Because UDP is used to transmit data, some packets may be lost; RealAudio counteracts lost packets by using a loss correction system. The loss correction system allows for 2 – 5% packet loss with minimal degradation of quality and up to 10% packet loss for an “acceptable” quality level8.

RealAudio is a dependable, trusted, and proven multimedia program. It allows for all types of bandwidths to transfer data, however it is not responsive to network changes. Because it uses UDP, it is unfair and utilizes all available bandwidth without regard to network congestion.

2.1.2 Windows Media Player

Windows Media Player, similar to RealAudio in many ways, is Microsoft’s entry into real-time streaming multimedia. It is bi-directional, using UDP for a data stream and TCP for control stream. It has its own compression algorithm, which like RealAudio, is scalable for differing bandwidth machines. Since it uses UDP for transmitting data, it is unfair to other network traffic during congestion. Windows Media Player increases its priority setting when there is network congestion,9 thus becoming increasingly unfair. It allows for streaming multimedia at different bandwidths but at the expense of other network flows.

2.2 TCP

TCP (Transmission Control Protocol) is the dominant protocol used over the Internet today. TCP is a connection-orientated reliable protocol first devised by the Department of Defense to guarantee delivery of messages.10 It provides information about delivered packets to the sender by sending sequence numbers and acknowledgments.11 This allows TCP to arrange the data received by the client in the appropriate order.12 If data is lost or late, it retransmits data until it is received.

TCP is always associated with IP, an Internet protocol that is responsible for transmitting a packet of data from one router to another. Each router has a table with IP addresses matching the appropriate Ethernet. Several routers may contain the same IP entry creating a loop. If a packet is sent and lost, the packet is resent and can arrive by another route. Therefore, TCP is also robust and quickly recovers from physical damages, such as faulty phone lines. TCP became successful because it is used by three commonly utilized services: file transfer, electronic mail, and remote login.13

TCP is a byte stream; it does not preserve the original data boundaries. TCP breaks the data into smaller packets referred to as IP datagrams, which are usually 64k in size. The client is unaware the data was sent differently. When the client receives the data, TCP arranges the data in the appropriate order using the sequence numbers.14

Since TCP sends the data as smaller packets, it can either buffer the data or send it immediately. If there is very little data in the packet, TCP can buffer the data until it receives more to send at one time. This saves bandwidth. For immediate transmission, there is a special PUSH flag that indicates that the data must be sent immediately regardless of size. Similarly, when the user wants to delete or break the present process with CTRL-C, this data and any previously accumulating data is sent immediately as urgent.15

TCP is a unicast transmission control protocol. It does not implement multicasting or broadcasting. This protocol uses point-to-point connections, where there is only one server and one client with only one connection between them. TCP is also full duplex. This implies that the data can be sent from the server to the client and vice versa using the same connection simultaneously.16

Recently, the use of audio and video over the Internet has increased. Reliable connection-oriented protocols such as TCP have proven to be undesirable. Reliability, congestion control, and retransmissions are some of the reasons TCP is inappropriate for streaming applications.17

2.2.1 Segment

TCP sends and receives data in segments. Each segment has a twenty-byte TCP header as well as the data. However, the size range of the data part of the segment is restricted by two factors. The segment and the TCP header must be less than the IP restriction of 65,535 bytes. Usually, it is the maximum transfer unit (MTU) that defines the upper limit of the segment size. Each network has its own MTU. If the segment reaches a router for which its MTU is less, the segment is broken into smaller segments with new twenty byte IP headers for each. This adds more overhead, bandwidth, and segments.18

Table 2: TCP header19

TCP protocol has two headers, each of which is twenty bytes long. They are called the TCP header and the IP header. One of the TCP header fields is the source and destination port. These are used to identify the sender and receiver's IP address, port number, and socket number combinations. Another two fields in the TCP header are the sequence and acknowledgment numbers. Since every byte is numbered, these fields indicate the next byte expected. They are mainly used to guarantee that data is delivered in the correct order. Also, another field in the TCP header is the TCP header length, measured in 32 bit words. After the length specified in the segment, the data begins.

There are also six one-bit flags: the urgent pointer, the acknowledgement flag, the push flag, the reset flag, and the SYN and FIN flags which are used for connections. The urgent pointer indicates the byte offset where the urgent data begins. The acknowledgement flag indicates that an acknowledgment of the data is expected if it is set to 1, and ignored if it is set to 0. The push flag indicates that the TCP must pass the data to the client's application as soon as it is received and not to buffer it. The reset indicates there is a problem in the connection and the connection is released. The SYN flag is used when a connection is being created. By setting it to 1, the SYN flag indicates either connection request or acceptance. The use of the acknowledgement flag with the SYN flag distinguishes between request or acceptance states. Similarly, the FIN flag is used when a connection is being released.20
The window size field indicates how many bytes the receiver would like to receive. If the window size is 0, this indicates the receiver does not want to receive any data at that moment. When the receiver is ready, it will indicate this by "sending a segment with the same acknowledgment number and a non-zero window size."21

The checksum field is used to guarantee the arrival of the data without anything missing, corrupted, or lost. The options field provides a way to indicate any other connection information. For example, during connection setup, both sides use this field to define the maximum segment size it can accept. Therefore, both end hosts need not have the same segment size.22

Another two fields were proposed to decrease use of bandwidth and adjust when the network is congested. The window size option field allows the end hosts to either expand or contract the window size to improve the delay of data arrival and use of bandwidth. The other field is the selective repeat. It allows the receiver to specify that a segment was either damaged or lost and would like it to be resent. This is known as a NAK, negative acknowledgment. If segments that follow have arrived correctly, they can be acknowledged. Therefore, TCP protocol implements "go back n protocol" which resends the lost or damaged segment and all other following segments, regardless if they had already been received correctly. Thus the "go back n protocol" wastes bandwidth. These two fields, the window size option and selective repeat, were meant to improve TCP to make it a more efficient protocol for the Internet.23
2.2.2 Connections

TCP establishes a connection between two end hosts through a procedure known as the three-way handshake. When the server gets a connection request by a client it contains information such as "the IP address and port to which it wants to connect, the maximum TCP segment size it is willing to accept, and optionally some user data".24 The server checks if its specified port is being used, if so, it replies with the reset flag on in the TCP header. If the server wants to accept the connection request, it returns an acknowledgment segment to the client. The connection and acknowledgement requests use the SYN and ACK bits in the TCP header to differentiate between the two requests. This establishes a full duplex connection between the server and client.25

In releasing a TCP connection, one of the hosts sends a TCP segment with the FIN flag on. The other host accepts the request and sends its FIN segment and an acknowledgement of the first FIN flag. When the first host receives this, it sends an ACK back to the other host, and the connection is released. If a problem arises, the timers help in releasing the connection. The hosts have timers that are started when packets are sent. When ACK or FIN segments are lost or late due to congestion on the Internet the timer times out and appropriate actions are taken according to the type of packet sent. For example, if the second host never acknowledges the first's FIN segment and the first host's timer times out, the first host disconnects and the second host will eventually realize that the first host is not responding and also disconnects.26

2.2.3 Window Management

When sending data, the receiver indirectly determines the window size. In the initial setup of the connection, the receiver defines the segment size it can accept, this is known as its buffer size. When the sender sends a certain amount of data, the receiver sends the size of buffer space left along with the acknowledgment of the received data. The sender then readjusts its window size to the available buffer space and in accordance to bandwidth availability. Therefore it can send data up to its current window size. When the receiver's application reads the data, its buffer size is adjusted, and consequently so is the window size.27

When the window size is 0, the receiver's buffer space is full and the receiver cannot accept the data. There are only two conditions where the sender can send data when the window size is zero. The first condition arises when the sender wants to terminate a process; it can send a segment to the sender as urgent data. The second condition arises if the receiver announced its window size as 0, and the sender would like to know the receiver's next expected byte and its current window size status.28

When the window size changes, the sender is not obligated to send data or acknowledgements immediately. It can buffer the data that is to be sent and piggyback acknowledgments on data that will be transmitted in order to save bandwidth on the Internet. This results in fewer segments to send and less overhead, which in turn improves performance.29 Implementing Nagle's algorithm helps TCP's efficiency. Nagle's algorithm states: "when data comes into the sender one byte at a time, just send the first byte and buffer all the rest until the outstanding byte is acknowledged. If the user is typing quickly and the network is slow, a substantial number of characters may go in each segment, greatly reducing the bandwidth used. The algorithm additionally allows a new packet to be sent if enough data has trickled in to fill half the window or a maximum segment."30

Buffering data is sometimes undesirable, especially with interactive applications. This may pose a problem since, for interactive applications, data is sent as it is received. If the buffer has only one byte of buffer space available, it sends a segment with window size of 1. The sender sends one byte of data, and the receiver's buffer is full so it sends a window size of 0 and acknowledges the byte received. When the receiver reads a byte, it sends its available window size as 1 and the process repeats. This wastes bandwidth, results in overhead, and is inefficient. To solve this problem, TCP implements Clark's solution. It requires the sender to wait until a certain amount of buffer space is available to send a segment to update its window size. Together, Nagle's algorithm and Clark's solution work together to improve performance and save bandwidth.31
2.2.4 Congestion Control

Another issue for transport protocols is congestion control. Before, congestion was only detected when a packet was not acknowledged and it had to be retransmitted. A lost packet caused by congestion in comparison to a destroyed packet was undistinguishable. The only solution to a congested network was to decrease the packets transmitted.32
There are two reasons for a congested network, "network capacity and receiver capacity".33 The network capacity decreases as more packets are put on the network, regardless of receiver capacity. If the sender is transmitting packets while the network is congested, it only increases the delay and congestion of the network. The receiver capacity is determined by how fast the receiver's application can read the data it has received. No matter how congested the network is, if the receiver capacity is low, the packet will be delayed in being read and acknowledged. Therefore, there are two window sizes that are kept: receiver and congestion. The minimum of the two window sizes is the number of bytes the sender may transmit.34

Not only does TCP need to control its window size when congestion is detected, it also needs to be able to adjust its window size when the network is uncongested. TCP uses an algorithm known as slow start. It begins with a small window. If it is acknowledged before it times out, the window size is doubled. This process is repeated until the receiver's window size has reached the maximum possible size of the congestion window. "When the congestion window is n segments, if all n are acknowledged on time, the congestion window is increased by the byte count corresponding to n segments. In effect, each burst successfully acknowledged doubles the congestion window."35

Another parameter is the threshold, which is maintained as half the congestion window size. If a timeout occurs, slow start is implemented again, until the threshold window size is reached. After this point, the congestion window is increased linearly for every packet acknowledged. Therefore for every timeout, the congestion window size is reset, the threshold is decreased and TCP implements slow start resulting in bursty transmissions shown by spikes in its standard deviation.36

	Congestion window (kilobytes)
	44
	
	
	
	
	
	
	
	
	
	
	
	

	
	40
	
	
	
	
	
	
	
	
	
	
	
	

	
	36
	
	
	
	
	
	
	
	
	
	
	
	

	
	32
	
	
	
	
	
	
	
	
	
	
	
	

	
	28
	
	
	
	
	
	
	
	
	
	
	
	

	
	24
	
	
	
	
	
	
	
	
	
	
	
	

	
	20
	
	
	
	
	
	
	
	
	
	
	
	

	
	16
	
	
	
	
	
	
	
	
	
	
	
	

	
	12
	
	
	
	
	
	
	
	
	
	
	
	

	
	8
	
	
	
	
	
	
	
	
	
	
	
	

	
	4
	
	
	
	
	
	
	
	
	
	
	
	

	
	0
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	0
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20
	22

	
	Transmission number

Graph 1: An example of the Internet congestion algorithm.37
2.2.5 Timers

When a packet is lost or has not been acknowledged before it times out, the packet is retransmitted and a retransmission timer is started. If the retransmitted packet is lost again or is not acknowledged in time, it is retransmitted once more and the retransmission timer is reset. The timer length is very important because if the timer times out too quickly, the packets may be retransmitted unnecessarily, wasting bandwidth and congesting the network. If the timer time out duration is too long, it will delay in retransmitting the packet if it was lost.

There are several factors that determine and affect the timer. One factor, roundtrip time, is the time for the packet to be sent and the acknowledgment to arrive back to the sender. The roundtrip between the end hosts is obviously the minimum for the timer. If the timer is set lower than the roundtrip time, it will unnecessarily retransmit the packet because it has not given enough time for the acknowledgement to arrive. Therefore the timer must be set longer than the roundtrip time. Another factor is congestion on the network. Since the network is dynamic, the number of packets on the network determines how much delay the packet will encounter. Therefore the delay of the network must also be used in determining the timer length. Because the network is always changing, the timer cannot be constant; it must be dynamic since it too must adapt to the changes in network status.

TCP maintains a variable, the round trip time (RTT), to adapt to the changing network status for each connection. To maintain an accurate approximation of the roundtrip time, another variable is maintained; the time it takes for an acknowledgment to return, M. The formula that approximates the current RTT is RTT = alpha* RTT + (1- alpha) * M.38 Usually the alpha is set to 7/8 to smooth the difference in the old and new value.39

This leads to choosing a value for the retransmission timeout. For this, another variable D is used because usually choosing twice the RTT proves inadequate. D is calculated: D= alpha* D + (1-alpha) | RTT-M|. Using this value, the timeout variable is calculated as RTT + 4* D.

One problem arises in the event that the retransmission timer times out, it retransmits a packet and receives an acknowledgement of the first packet. How can TCP distinguish which packet is being acknowledged, the first packet or the retransmitted packet? Karn's algorithm provided a solution to this scenario. The timeout variable is doubled and RTT is not updated when a packet is retransmitted.

Another timer used by TCP is the persistence timer. Its function is to send a packet to determine the receiver's buffer size. If the buffer size is zero, the persistence timer resets itself. In order to determine the present receiver's buffer size, TCP waits until the timer times out to resend a packet. If the buffer size is nonzero, TCP sends a packet.

2.2.6 Problems with Streaming Applications and TCP

Real-time multimedia applications cannot tolerate late data. Since streaming applications are time dependent, lost or late data causes jitter in video and dead/white noise in audio applications. Therefore these types of applications do not need reliable delivery, only best-effort. Retransmitting data is usually unnecessary. If the retransmitted data does not arrive in time to be viewed or heard, it is not used.40 “Reliability through indefinite data retransmission is not desirable since streaming applications can often tolerate some degree of data loss, but can not usually tolerate the delay introduced by the retransmission of lost data.”41

Not only is reliable delivery undesirable because retransmitted data may not be used, it also delays the transmission of other data by wasting the network bandwidth.42 Therefore retransmitting data during network congestion delays the needed data for real-time streaming applications. This may result in more unusable late data. In most cases, retransmitted data causes more jitter and white noise.43

TCP’s congestion control scheme is also undesirable for streaming applications. Congestion implies that the client did not receive the data in time, the server did not receive the acknowledgment in time, or the packet was lost. If there is no detection of congestion over the network, TCP linearly increases its congestion window size. If it detects congestion, such as packet loss, it cuts its congestion window by half. This results in bursty data transmissions and in poor quality multimedia applications.44 “The congestion control mechanism used by TCP reacts to a single packet loss by halving its congestion window. This causes abrupt changes in the sending rate that are not appropriate for multimedia flows that require a smooth variation of the sending rate.”45 For smooth streaming applications, new congestion control algorithms that transmit data consistently are needed.

TCP guarantees reliability by retransmitting packets until the receiver receives it. This characteristic introduces problems when TCP is used for streaming applications. Late packets in real-time multimedia become useless.46 The delayed packets result in poor quality multimedia. These types of applications can tolerate some lost packets but not delayed packets. In essence, delayed packets become lost. 47
2.3 UDP

User Datagram Protocol is another protocol that is used on the Internet today. This protocol provides a way to send data without establishing a connection between the end hosts. This reduces the connection overhead that TCP introduces. The UDP segment header is 32 bits long (8 bytes). This header consists of the source and destination ports, the segment length, and the checksum.48
UDP only provides bare bone functions such as multiplexing/demultiplexing and error checking.49 Therefore most of the responsibility of transferring the data relies on the IP. After the header is attached to the data, "UDP takes messages from application process, attaches source and destination port number fields for the multiplexing/demultiplexing service, adds two other fields of minor importance, and passes the resulting 'segment' to the network layer. The network layer encapsulates the segment into an IP datagram and then makes a best-effort attempt to deliver the segment to the receiving host. If the segment arrives at the receiving host, UDP uses the port numbers and the IP source and destination addresses to deliver the data in the segment to the correct application process."50
UDP connectionless protocol has several advantages over TCP. Because there is no connection when using UDP, the delay is less than if TCP was used. UDP also does not maintain a connection state because it is a connectionless protocol. It does not provide a congestion control or maintain sender/receiver buffers. Therefore a server can cater to multiple clients and data can be sent as soon as it is produced by the application regardless of congestion and receiver buffers. Lastly, UDP has less overhead because it only has an 8-byte header while TCP has a 20-byte header.51

UDP is usually chosen for multimedia applications. Unlike TCP, UDP is capable of multicasting. The application sends data to the clients as it is received. It has the least delay since the data segments are sent without an established connection. This results in some packet loss, but less delay, which is more preferable for multimedia applications.

Since UDP does not have congestion control and no restricting sending rate, it is an undesirable protocol when the network is congested. Sending the data as it is produced without regard to the network status only wastes bandwidth and increases congestion and delay. When the network is congested, routers would merely discard packets resulting in lost packets and wasted bandwidth. With UDP putting more packets on the Internet, an undesirable cycle for multimedia applications is created.

2.4 Attempts at Multimedia Protocols

There are several protocols currently available for streaming multimedia: RSVP, RTP, RTCP, and RTSP. These available protocols, along with their development and features, will be discussed below.

RSVP, the Resource ReSerVation Protocol, allows the client to request a level of quality. To deliver this request, the protocol reserves the bandwidth at the router. This guarantees delivery at the requested quality. Xerox Corp.'s Palo Alto Research Center (PARC), MIT, and Information Sciences Institute of University of California (ISI) designed this protocol. Version 1 of RSVP Specification was approved in September 1997.52

RSVP is implemented by reserving network resources, such as bandwidth, CPU, and memory buffers. It negotiates the parameters with the routers and also maintains the router states in order to deliver the requested quality. The receiver makes a request with the quality of service (QoS) and maximum delay desired.53 It has two policies that implement this technique. The Policy control checks the permissions for making reservations while admission control determines if the routers have sufficient resources for the request. The client is either granted the bandwidth and quality requested or given a busy signal.54 A RSVP daemon communicates with the routers to determine the path. It sends the request, update, and control information to keep the reservation active. This allows the protocol to handle changing paths.55

 Diagram 1: RSVP Making Reservations56
RSVP provides three kinds of traffic: best effort, rate-sensitive, and delay sensitive. The quality of service determines the type of data flow. Rate-sensitive traffic, also known as guaranteed bit-rate service, guarantees transfer rate at the expense of time. It is used in applications such as videoconferencing. Delay sensitive traffic guarantees the delivery of data on time at the expense of a constant transfer rate. For non-real time data, it is referred to as controlled-delay service and for real-time data it is referred to as predictive service.57

RSVP is multimedia friendly. It is scalable since implementing IP multicast allows multiple users to join without increasing Internet traffic. It also guarantees the availability of resources. It is not a routing protocol, but a control protocol. The routing protocols that implement RSVP make the requests and determine the location of the receiver.58

Diagram 2: Reservation Properties59
There are several features of RSVP. Receivers initiate reservation requests. All the reservation states at the routers are soft states. RSVP sends refresh control messages to maintain the reservations. This allows RSVP to handle changing paths. RSVP's data flow travels in one direction because reservations are only made for the data to travel from the Webcasting server to the client. RSVP also supports multicast and unicast and is adaptable to changing routes. It can also handle different quality requests from the receivers. "The senders divide traffic in several flows, each is a separate RSVP flow with different level of QoS. Each RSVP flow is homogeneous and receivers can choose to join one or more flows."60 It is compatible running over both IPv4 and IPv6.61
The Internet Engineering Task Force (IETF) specifically developed Real-Time Protocol, RTP, for streaming multimedia. The protocol was derived from UDP. Therefore it offers UDP's multiplexing and checksum features. It primarily uses IP multicast but can also use unicast. It works with a control protocol called RTCP, Real-Time Control Protocol. The two features that RTP provide are timestamping and sequence numbering. These features are implemented using the RTP header, which precedes any packet of data. Timestamping helps to sort the data packets by time in order to play the audio or video correctly. The responsibility of synchronization, lost packet recovery, and congestion control relies on the application. Sequencing is used to place the data packets in correct order and to detect lost packets. The source identification function allows the client to know the location of the sender. Some header bits are used to indicate the type of audio encoding used.

	Version
	P
	X
	CSRC
	M
	Payload Type
	Sequence Number

	Timestamp

	Synchronization source (SSRC) identifier

	Contributing source (CSRC) identifiers

Diagram 3: RTP Packet Header62
RTCP, the Real-Time Control Protocol, is designed to work with RTP. An RTP session sends RTCP packets as control information, which communicates quality of data, and routing information. With the aid of the control packets, RTCP also provides several features that add reliability and flow control. It provides quality of service monitoring and congestion control. When the receiver sends feedback about congestion, RTCP adjusts its transmission rate. It also limits the control packet traffic to five percent of the session data packets and prevents the control information packets from congesting the network.

Real-time Streaming Protocol (RTSP) was proposed by Progressive Networks (RealNetworks), Netscape, and Columbia University in October 1996. After its specifications were submitted to the IETF, it has received many supporters such as Apple, IBM, Silicon Graphics, Vxtreme, and Sun.63 It provides similar HTTP text services to streaming multimedia. This protocol synchronizes multiple media objects such as "audio, video, still images, events, URLs, HTML pages, script commands and executable programs."64 It provides a functionality, which imitates a VCR such as pause, fast forward, and reverse. Therefore it is similar in syntax and functionality to HTTP. It was designed to use TCP as a transport layer for control but it can also support UDP. It bases its delivery mechanisms on RTP. Therefore it needs to maintain session states, as it does in RTP.65 "RTSP is an application level protocol designed to work with lower-level protocols like RTP or RSVP to provide a complete streaming service over Internet."66 It is used for servicing single unicast users and large multicast groups. It segments data into packets depending upon the bandwidth availability. When the client receives some packets, the client's application can play one packet while decompressing another and downloading a third at the same time. This allows the user to almost instantly listen without waiting for the whole file to arrive. RTSP supports three operations: "retrieval of media form the media server, invitation of a media server to a conference, and addition of media to an existing presentation."67

Microsoft has also shown its support for RTSP by producing its own rival protocol called Active Streaming Format (ASF). ASF includes both control and protocol functions. It implements redundant forward correction method with interleaved data to repair lost data without retransmissions.68

2.4.1 TFRC

Any new proposed protocol tries to be TCP friendly or TCP compatible since the prominent Internet protocol for most applications today is TCP. TCP-friendly is defined as such: "if its arrival rate does not exceed the arrival rate of a conformant TCP connection under the same circumstances."69 TCP compatible is defined as such: "a flow that behaves under congestion like a flow produced by a conformant TCP. A TCP-compatible flow is responsive to congestion notification, and in steady-state it uses no more bandwidth than a conformant TCP running under comparable conditions (drop rate, RTT, MTU, etc.)."70

One approach to streaming control protocols is rate-based feedback. It is a protocol that works with unicast and multicast applications. It improves the quality of streaming protocols by maintaining the packet loss ratio. This is accomplished by "the receiver continuously monitoring the quality of streams, such as received data rate or data loss ratio, and sends feedback messages back to the sender, who adjusts the data rate accordingly."71
There are two drawbacks to this approach. First, the feedback mechanism is time and state dependent. The feedback changes the data rate as soon as it reaches the sender. It is also state dependent because it takes time for the state of the protocol to change according to the feedback message. Second, the problem of network buffering is not addressed. Since the data rate is the only parameter controlled in this scheme, there is a possibility of overflowing the network buffer. These constraints allow TCP to be more aggressive, therefore giving the rate-based feedback mechanism a disadvantage.

A new protocol, SCP (Streaming Control Protocol), was proposed to improve quality of multimedia applications over the Internet. SCP is implemented on top of UDP. It has congestion control policies that determine the congestion window size. The sender outputs packets out at a rate of the size of the congestion window divided by the estimated round trip time. When a packet is sent, the sequence number of the packet is recorded and a timer is started. If the acknowledgment of the packet is received before or after the timer is timed out, the round trip time is adjusted accordingly. Any unacknowledged packets are not retransmitted, therefore saving bandwidth. This decreases congestion and round trip time by avoiding unnecessary packets being sent over the Internet. SCP maintains two variables more than TCP. They are the round trip time estimator and the time it takes for an acknowledgment to be received.72

"SCP tries to quickly discover how much buffering is appropriate for maximum throughput while avoiding excessive buffering, or buffer overflow and resultant packet loss."73 When SCP detects congestion, it implements an exponential back-off. It also has four states: slowStart, steady, congested, and paused. Unlike TCP, SCP has a steady state. In this state, the rate acknowledgments are received determines the congestion window size and uses all of the available bandwidth. This maintains "maximum throughput and minimum buffering"74. When congestion is detected, SCP enters the congested or paused state. These congestion control policies result in a smooth media applications. An indication that more bandwidth is available is when an acknowledgment is received. Thus, the window size is doubled. TCP, on the other had, reduces its congestion window by half when it detects congestion resulting in its usual jerky transmissions.

SCP detects congestion by a missing acknowledgment or the timer timeout. It then implements exponential back-off in two ways. It reduces the congestion window size multiplicatively and doubles the duration of the timer. The back-off is disabled and SCP enters a steady state when the first acknowledgement is received for a packet sent in the congested stage. When there are no packets to send, SCP enters a paused state and its bandwidth will slowly be discovered by other sessions competing for bandwidth.75

SCP is a better multimedia Internet protocol because it reduces jitter and latency caused by retransmissions. It uses acknowledgments to detect network congestion and if acknowledgements are lost, then the congestion window is adjusted accordingly. This allows other sessions using the bandwidth to share fairly.76

Another proposed solution for streaming protocols is using a binomial algorithm to adjust the window size. It is an improvement from TCP's implementation of using a linear congestion control for increasing the window size and using a multiplicative decrease for cutting the window size in half when congestion is detected. TCP uses an additive-increase/multiplicative decrease (AIMD) algorithm. Although more friendly than UDP, it is the most aggressive when competing for available bandwidth. This causes drastic changes in transmission rates. This is an undesirable characteristic for streaming applications since the quality also suffers because of it.77 "Multimedia flows… require a smooth variation of the sending rate."78

Two binomial algorithms were found to be suitable for multimedia applications because they do not respond well to drastic window size reductions. One algorithm is the inverse-increase/additive decrease (IIAD) which showed to be fair when competing for bandwidth with TCP.79 The other algorithm SQRT, resulted in larger window variations than IIAD but lesser than TCP. It also "converges to share of the bandwidth in fewer number of round-trip times than in the TCP-IIAD case."80 Therefore, binomial algorithms are more suited for streaming applications than the TCP AIMD used today.81

TCP Friendly Rate Control Protocol (TRFC) was proposed to improve congestion control over the Internet. One of its disadvantages is that it can only be used with fixed packet size. An extension to this proposal was made to use an equation based congestion control.82 This would allow variable size packets to be sent, which is more desirable for multimedia flows for two reasons. First, there is more end-to-end delay with large packet size. Second, if a packet is lost, it would result in quality degradation but the loss of small packet size data will not result in drastic quality variations.83
TFRC with variable packet size proposed to redefine the definitions of TCP-friendly and TCP-compatible. "A flow is TCP Compatible if it behaves under congestion like a flow produced by a conformant TCP. A TCP-compatible flow is responsive to congestion notification, and in steady-state it uses no more bandwidth than a conformant TCP using packets of size the MTU and running under comparable conditions (drop rate, RTT, MTU, etc.)."84 These modifications of the definitions attempt to make bandwidth sharing fair to both large and small packet sizes.85
The protocol uses the following equation to evaluate the transfer rate:

S

86
X = --

T * sqrt(p) * sqrt(2/3) * (1 + 9p * 288 * p * p * p)

Every packet loss indicates congestion regardless of packet size because routers do not pick which packets to drop. Therefore every packet is equally important in indicating congestion on the network.87

In the experimenting phase, TFRC flows take longer to react to congestion than TCP flows. Most applications have minimum and maximum sending rates. If the sending rate of the TFRC is below the application's minimum, it is better to stop sending or set the sending rate to the minimum rate requested by the application. At this point, if the protocol insists on sending at the application's minimum sending rate, the protocol has become unfair. Therefore, TFRC stops the flow and indicates it cannot provide the network service.

2.5 Routers

Routers operate in the network layer of the TCP/IP model. As the name implies, they are responsible for 'routing' IP packets. More specifically, they are responsible for routing packets between different subnets in an IP network. Along with this, routers also handle congestion control between subnets, allowing them to work between networks of varying speeds.

When a computer needs to send an IP packet to another machine, it first checks its own routing table. If the remote host is on the same subnet (as determined by its IP address and the subnet mask of the sending machine), it gets the remote MAC address, and sends the packet. However, if the remote machine is on a different subnet, the IP packet must go through one or more routers before reaching its destination. To do this, the sending machine checks its routing table for an entry that matched the destination. This entry contains the IP address of the appropriate router to send the packet to. When this router receives the packet, it starts the process over again, first checking its own routing tables, then sending the packet either to the destination if it is on the same subnet, or to another router. All of this is transparent to the user.

There are several algorithms in use by routers. Each has the goal of delivering the packet to the destination as efficiently as possible. Some examples of routing protocols are Shortest Path, Flow Based, and Distance Vector. Since networks, and the Internet in particular, often have changing topologies, the routing tables need to be updated to make sure they have current information.

Along with making sure that packets get to where they are going, routers take part in congestion control. Often, a router needs to deal with bottlenecks in a network. This occurs when the bandwidth on one side of the router is less than that on the other side. This could be caused by one network being faster than the other or several networks sending packets to a single network. In order to deal with this scenario, routers make use of several algorithms to control the congestion. Two of these are the Token Bucket and the Leaky Bucket. The Token bucket allows for transmission burst, while not penalizing the host, provided the average throughput from a given host stays below a given average. The Leaky Bucket maintains a queue of packets that are sent out as bandwidth allows. If too many packets show up in the queue, they are dropped, and never reach the host.

One problem with the Leaky Bucket algorithm is that it waits for the congestion to reach a critical point before taking any action. A solution to this is to use a protocol known as RED, or Random Early Detection. If RED sees that the network is about to become congested, it randomly drops packets to let the senders know that they should slow down their sending rate. This allows more packets to get through in the long run, but slows down the rate at which they are transmitted.

The method of dropping packets works well for TCP flows. A TCP flow recognizes this, and takes care of retransmission. It also cuts its transmit rate to account for the available bandwidth. UDP flows, on the other hand, do not respond to dropped packets. The sender just keeps sending packets without regard for how many are actually getting through. This is particularly a problem when a router is using RED.88
2.6 Linux

Linux is an open source, Unix-based operating system. Linus Torvalds, a student at the University of Helsinki, in Finland, developed it in 1994. Though Linux started out as a project for a class, it quickly grew into one of the most popular operating systems in the world. The Linux kernel is currently in version 2.4, and is contributed to by programmers throughout the world.

Two of the main reasons for the popularity of Linux are its built-in networking capabilities and the abundance of free software available for it. Like its Unix predecessors, networking is at the heart of the Linux OS. This, along with the fact that all this code is open source, has allowed programmers to implement almost all of the common network protocols on Linux. This capability has also allowed Linux machines to act as routers, running, among other protocols, RIP, BGP, and OSPF.

Like the Linux OS itself, many of the applications available on Linux are also open source. This allows programmers and users to have access to some of the best software there is, at little or no cost. This fact alone has made Linux a very popular platform for software development and research.

The recent port of the Java Development Kit to Linux has also increased the popularity of the OS. Now programmers are able to develop and run Java applications on Linux. In fact, several of the best Linux apps available, namely StarOffice and Forte for Java (a Java IDE) are written in Java.

2.7 NISTNet
NISTNet is a network emulation package designed by Mark Carson of the National Institute of Standards and Technology for the US government. The software requires a 486 PC with 16MB of RAM for a 10 Mbits/sec network running on a Linux operating system. “NISTNet allows network designers, application developers, and network researchers to ‘accurately’ emulate network performance conditions by a variety of networks and network paths.”89
NISTNet gives the advantages of simulations and live testing while downgrading their disadvantages. It is a tool, which can be used to test a network protocol’s specifications in an environment similar to the real world. Because it is similar to a simulation, the environment can be manipulated, recorded, and controlled, which is ideal for testing aspects of the network protocol.

A computer running NISTNet needs to be set as a router between two or more subnets. NISTNet runs as a module on the router replacing its normal IP forwarding mechanism and all of its components.90 The network administrator sets the addresses for which NISTNet administers. Since NISTNet acts on the administrator’s settings of a sender and receiver network pair, network control can be made either one way or two ways. This allows testing of a network environment in which the return travel has a different path.

NISTNet allows the network administrator to control several key issues in network routing such as the mean and standard deviation of network delay, percentage packet loss, percentage packet duplication, and bandwidth limitation. The network emulation package also allows the network administrator to control the queuing mechanism of the router and its queue sizes.

The administrator can manipulate, reproduce, and analyze the network simulated by NISTNet. The program tracks the number of bytes sent, current packets in the queue, average bandwidth for the last 10 seconds, explicit congestion notifications, number of packets duplicated, and number of packets dropped for a sender and destination address pair. NISTNet starts tracking when the destination and sender address pair is inserted. The system is adaptive, allowing variables to be changed and updated at any instance. NISTNet may be run using a graphical or text based interface.

Chapter 3

Methodology
3.1 Java-Based TFRC

Java-Based TFRC is a bi-directional, real-time, TCP-friendly, streaming multi-media protocol that runs in Java. It uses a data stream to send data and a control stream to track congestion, both of which use UDP as the underlying transport mechanism. The protocol allows for two-way communication between machines, using a single TFRCSocket. Java-Based TFRC functions are similar to Java’s implementation of a TCP connection. The following explanation is outlined in Diagram 4.

Applications would implement Java-based TFRC by using TFRCServerSocket, TFRCSocket, TFRCInputStream, and TFRCOutputStream. TFRCSocket and TFRCServerSocket are used to connect machines and query its status similar to Java’s Socket and ServerSocket. TFRCSocket has a data stream and control stream for sending and receiving data and acknowledgements. Applications communicate using TFRCInputStream and TFRCOutputStream to access internal TFRCSocket buffers used for sending and receiving data.

Data streams send TFRCPackets, comprised of data and a TFRCPacketHeader. The data is an array of bytes and a TFRCPacketHeader is comprised of a time stamp and a sequence number. Data streams use UDP because real-time multimedia needs to be received immediately with minimum delay and continuous ordered packets. Data is sent at a rate determined by TFRCCongestion, which uses the TFRC formula to calculate the sending rate and bandwidth. Once the allocated amount of time has passed between sends, TFRCSocket creates a TFRCPacket using data from an output buffer, which is then passed on to the data stream for sending. Once the receiving end of the data stream receives the packet it is passed on to the receiver’s TFRCSocket, which in turn places the data into the input buffer and uses TFRCPacketHeader for congestion information.

ControlStream sends AckWindowLists, comprised of a list of the last eight packets received from the sender. Once the TFRCSocket receives a TFRCPacket, it updates the AckWindowList for immediate departure by the control stream. Lost packets heavily affect TFRCCongestion and since the control stream uses UDP, some control stream packets may be lost. To counteract control stream lost packets, Java-Based TFRC keeps track of the last eight acknowledgments in case an ACKWindowList is dropped, thus minimizing unaccounted received packets.

TFRCSocket updates TFRCCongestion every time a valid TFRC Packet is received. The updated AckWindowList is passed on to TFRCCongestion to recalculate round trip time and loss event rate. An out-of-sequence packet is considered a lost packet and is discarded by Java-Based TFRC.

Once an application connects with another application using TFRCSocket and TFRCServerSocket, it sends received data through TFRCInputStreams and TFRCOutputStreams. These streams read and write to buffers in TFRCSocket, which writes to the data stream at a rate determined by TFRCCongestion. This builds a TFRCPacket from the output buffer, which the data stream sends to the corresponding receiving data stream. The data stream receives the packet and passes it on to the corresponding receiver’s TFRCSocket, which analyzes the TFRCPacketHeader and validates the TFRCPacket. A validated packet is split into two parts: the data is sent to the input buffer and the header is used to update the AckWindowList. The updated AckWindowList is passed on to control stream and the corresponding control stream uses the packet to update TFRCCongestion.

	SENDER
	RECEIVER

	
Sending Application writes to

 Sending Buffer

TFRC Protocol queries

 Congestion Control for sending rate

Get Data from

 Sending Buffer and create TFRC Packet

Send TFRC Packet using

 Data Stream

Receive AckWindowList from

Control Stream

Congestion variables updated by

Congestion Control
	Data Stream

receives TFRC Packet

AckWindowList

is updated

Control Stream

sends updated AckWindowList

Receiving Buffer

updated with TFRC Packet Data

Receiving Buffer

read by Receiver Application

Diagram 4: Sample run of an application using JAVA-Based TFRC Protocol

3.2 TFRC Test Application
The application used to test the functionality and performance of the Java-Based TFRC implementation is a streaming audio application written in Java, named AudioApp. It falls under the category of "intelligent" TFRC applications as it adjusts its behavior to compensate for changes in available bandwidth. In its current form, the application consists of a client/server architecture.

Unlike most other streaming audio applications, the AudioApp does not play the data it receives. Instead, it saves the data to a file, which can be played and analyzed at a later date. This allows a specific session to be captured, and the data itself to be examined.

The server side of the AudioApp reads in a raw audio file, and sends the data as a series of bytes through the TFRCSocket, making use of the TFRCOutputStream to do so. Before each send, the server queries the socket to obtain the available bandwidth. Based on the value it receives, it then decides on the audio quality to send the audio at. For example, if the audio was recorded at 44100 kHz, and the connection is too slow to handle this, the server may only send every other sample, cutting the quality down to 22050 kHz.

The client side of the AudioApp reads the data from a TFRCSocket through a TFRCInputStream. If necessary, the client pads the data with zeros, and writes it to a file. It decides how to pad based on the packet header sent by the server. For instance, if the server sends at 22050kHz, and the client is writing a file at 44100 kHz, then it will insert a 0 byte after every byte it receives.

The data sent between the client and server is simply an array of bytes with a short header attached. This header contains the frequency of the data as an integer and the sequence number as a short. The sequence number is used to pad the output file in case of lost packets.

3.3 Experimentation

The two dominating Internet protocols, UDP and TCP, are tested and compared with the new Java-based TFRC protocol. Comparisons between TCP and TFRC determined if TFRC’s implementation conformed to TCP’s congestion control, while the comparisons between UDP and TFRC determined the new protocol’s quality control. TFRC was expected to react differently than TCP but have the same average bandwidth as TCP in the long run. TFRC was expected to have fewer packet drops than UDP.

Using NISTNet, the test was conducted individually for each of the three network protocols. Each protocol had an associated test program, which used that protocol to send the audio data over the network. The results of the test were recorded for later analysis. This analysis included data such as transmission time, file integrity, packet loss, and sending rate. The standard deviation and mean delay, bandwidth, drop rate, drops, duplication rate, duplications, bytes sent, and packets sent were also recorded.

The data sent for the test was a raw audio file, created specifically for this test. The file was a sine wave, with frequency 440kHz, sampled at 16 bits with a frequency of 44100 MHz. This is approximately equal to CD-quality audio. The file used was 30 seconds long, which amounted to a file size of about 2.6MB.

Several methods were employed to record the results of the tests. First of all, each client printed a time stamp for every packet that was received. This allowed for the recordings of transmission times. Monitoring the flows with tcpdump was another method used. Tcpdump is a Linux utility, which sets the network card in promiscuous mode, allowing the user to monitor all network traffic. By setting tcpdump to only look at packets generated by the sender (the AudioApp server) and then parsing the file using java, many parameters could be tracked. The most significant advantage gained by using tcpdump was the ability to record data on the sending rate of each flow and how it changed during the transmission.

The first set of tests was run on an uncongested network, running at 10Mb/s. The second and third sets were run on networks which were experiencing packet drop. The packet drop rates used were 5% and 20%, for tests 2 and 3 respectively. Each set of tests was run three times, and the results averaged.

3.4 Network Emulation Setup
The network emulation test bed was comprised of three computers. Each computer was a Pentium 133 with 64 MB of RAM, 10-Base-T Dlink Network Card, and a 1.2 GB HD. They all ran Red Hat Linux version 6.2 with kernel 2-2.14 as their operating system.

The client machine, called BamBam, had an address of 192.168.2.2 with a gateway of 192.168.2.1. The server, called Pebbles, had an address of 192.168.1.2 with a gateway of 192.168.1.1. The router, named Dino, had two network cards with addresses, 192.168.1.1 and 192.168.2.1. Dino had routing capabilities installed in it in order to route between the two subnets. This was done using Linux Ipv4 packet forwarding.

Diagram 5: The Test Environment

NISTNet has two filters: one from client to server, denoted as CS, and the other from server to client, denoted SC. There are multiple settings, one of which is as near to a “perfect” network environment with minimum delay and no congestion. The settings for SC and CS were not always the same, allowing for testing on the control stream and the data stream separately.

Chapter 4

Results and Analysis

 Overall, results of the test were as expected, though several problems were encountered. All of the results are presented in Appendix C in the form of spreadsheets and graphs.

For the first test, Test 1, the protocols were tested with no network congestion. Both TFRC and TCP transmitted their data at about the same rate. In both cases, the transmission of the 30-second file took between 24 and 28 seconds, within the acceptable range to be considered real-time. Neither protocol exhibited any loss. This was the expected behavior of TCP, and the anticipated behavior of TFRC.

The UDP flow, on the other hand, did demonstrate a measurable amount of loss. Of the 2790 packets transmitted, about 143 were dropped. This is equivalent to approximately five percent of the total. Even though there was no congestion, there was some packet drop because the network ran on a 10Mb/s network, which was insufficient for the load.

The UDP flow was not immensely affected by Test 2's increase in drop rate as it was already dropping packets due to network speed. The transmission time held steady to what it had been in the first test, coming in around 18 seconds.

In the second test case, Test 2, NISTNet was set to drop five percent of all packets received. The UDP protocol was the least affected by the changes in the Test 2 environment. The total transmission time for TCP and the number of drops experienced by UDP increased slightly. The drop percentage for UDP was approximately five percent, which was the amount set by the emulator for this test case.

The TCP flow in Test 3 was adversely affected by the higher packet drop rate. The transmission time increased from 24 seconds to 34 seconds. Considering the fact that the file only represented a 30 second sound clip, this demonstrates one of the prime reasons that TCP is not acceptable for real-time streaming multimedia.

Test 3 provided the most interesting results of the set. TFRC behaved as expected, and was able to transmit its entire 30-second file in 28 seconds. This is considered an acceptable real-time transmission. The audio server responded to the congestion as anticipated when the data sampling rate was decreased as it was sent. Test 3 resulted in the file transferred in a timely manner, even though it was not at the highest quality. The total amount of packet drop for UDP was mush higher than TFRC, though the percentages were about the same TCP, the reliable protocol, had no packet loss.

	
	Packet Loss
	Transmission Time

	
	Test 1
	Test 2
	Test 3
	Test 1
	Test 2
	Test 3

	TCP
	0
	0
	0
	25
	24
	31

	UDP
	143
	141
	560
	17
	17
	17

	TFRC
	2
	53
	130
	23
	21
	22

Table 3: Summary of Test Results

Other than examining transmission time and packet loss, the sending rate for each protocol can also be analyzed. TFRC was designed to be TCP friendly, and designed to have a steadier sending rate than TCP. This analysis successfully proved two features that TFRC was designed to implement.

Graph 2

A graph of the sending rate for the first test with no congestion shows that the UDP flow had the highest sending rate and did not back off regardless of packet loss (which can be seen from the loss analysis). Both TCP and TFRC, on the other hand, had significantly lower sending rates, which was adjusted for the available bandwidth. It should also be noted that the sending rate for TFRC is lower than TCP, suggesting not only that the Java implementation of TFRC is TCP-friendly, but also that there is room to improve TFRC performance, while still remaining TCP-friendly.

Graph 3

The graph of the sending rate for the second test with five percent packet drop shows very similar results to the first test. As mentioned earlier, increasing packet drop to five percent did not have much effect on the already slow 10Mb/s network. Like the results from the first test, these results show that UDP transmits with a steady, high rate, and does not take network congestion into account. Again, as in Test 1, TCP and TFRC flows are both better behaved, and react to the packet drop by limiting their transmission rate.

Graph 4

The sending rate graph of Test 3 shows the sending rates for each protocol when there is a twenty percent packet drop rate. As in the previous two test cases, the UDP flow is steady, and transmits at a high rate with no regard for congestion. The difference in this test is in the behavior of TCP and TFRC. TFRC keeps a reasonably steady rate that it exhibited in the previous tests, but the sending rate for TCP is very unsteady. This shows TCP reacting to packet loss by increasing exponentially, then cutting its flow in half when it detects loss.

The graphs for the first and third tests clearly show the benefits of TFRC. Not only does TFRC prove itself to be TCP friendly, the last graph indicates that TFRC also adapts to packet drop much more smoothly than TCP does. Both of these are very important aspects of a network friendly multimedia protocol.

PING 192.168.2.2 (192.168.2.2) from 192.168.1.2 : 56(84) bytes of data.

64 bytes from 192.168.2.2: icmp_seq=0 ttl=254 time=1.1 ms

64 bytes from 192.168.2.2: icmp_seq=1 ttl=254 time=0.8 ms

64 bytes from 192.168.2.2: icmp_seq=2 ttl=254 time=0.8 ms

64 bytes from 192.168.2.2: icmp_seq=3 ttl=254 time=0.7 ms

64 bytes from 192.168.2.2: icmp_seq=4 ttl=254 time=0.7 ms

--- 192.168.2.2 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0.7/0.8/1.1 ms

Ping Test

Round Trip Time is 4 ms.

Round Trip Time is 4 ms.

Round Trip Time is 5 ms.

Round Trip Time is 4 ms.

Round Trip Time is 4 ms.

TFRC Round Trip Time Results

As one final way to see whether or not the difference in sending rate between TCP and TFRC was due to Java itself, we wrote a Java ping test. The results of this test were compared to the results of running ping on Linux. We found that ping took an average of 0.8ms, while the Java ping took 4ms. This gives some insight into why the sending rate was lower for TFRC than for TCP.

Chapter 5

Conclusions

There is a current need for a better performing real-time multimedia protocol. The two most popular Internet protocols that are currently being used, TCP and UDP, both have drawbacks when it comes to streaming multimedia transmission. On one hand, TCP gives reliable transmission and behaves well with other network traffic, especially in congested situation. On the other hand, it does not provide a smooth and uninterrupted flow for streaming multimedia. Although UDP ensures that data is sent at a constant rate, it sends all packets without any regards to network congestion. The problem arises because it does not react to network traffic, and tends to flood a network that is already congested. Many routers react to this by punishing UDP flows with dropped packets.

TFRC seems to be a solution to the problems inherent in the other two protocols. Like TCP, TFRC is a network friendly protocol, which adjusts its transmission rate to adjust for the available bandwidth without TCP’s problematic retransmissions. This leads to smoother multimedia streaming, as would be seen in a UDP flow. Also, TFRC provides a way for applications to get information on the available bandwidth, and adjust the sent data accordingly. By combining TFRC with an intelligent TFRC application, real time multimedia streaming can be accomplished, even over the limited bandwidth of wide area networks such as the Internet.

Since we implemented the TFRC protocol in Java, on a Linux platform, it allowed us to write code quickly, along with giving us access to the many networking tools available for Linux. The most notable among these tools was NISTNet, a network emulator tool. Along with the protocol, we developed an application to use it. This application, while not technically a streaming multimedia application, allowed us to evaluate the performance of the TFRC protocol by transmitting CD quality audio data over a simulated wide area network.

The results from testing our Java based TFRC protocol were very promising. The protocol behaved as planned, showing that it is both TCP friendly and able to transmit audio smoothly without the delay and jitter inherent in a TCP flow. We also found room for improvement of our code Its sending rate could be increased and still be at or below that of TCP’s sending rate. TFRC’s bandwidth fairness, its smooth standard deviation, and its congestion prevention strategy have proven it to be a great combination of both UDP’s level transmission rate and TCP’s Internet friendliness.

Chapter 6

Future Work
Currently, many techniques have been proposed and implemented that aim to guarantee quality and solve current day Internet problems. These techniques may be used with any protocol, such as TCP or UDP, to increase its quality during streaming audio transmissions.

One proposed technique is IP multicast that has been developed to handle large-scale real-time Webcasting. Instead of sending data to individual users logged onto a Webcasting server, the data is sent once to many users thus preserving network bandwidth. This is accomplished by having the routers find "the closest node that has the signal and replicating it, making the model scalable."91 IP multicast's problem, however, is that there is no two-way path between the server and user.92
Since real-time multimedia requires uninterrupted transfer of data, another technique known as forward error correction has been suggested. This technique transmits redundant data, so that if data is lost, it is interleaved with the redundant data, to improve audio/video quality. It requires more bandwidth for a given quality.93

More work can also be done on the application side. Now that there is a protocol in place which can provide the application with data about bandwidth, there are several ways for the application to react. The best way depends on the situation, and can be determined by doing user studies.

The largest area where our Java-Based TFRC protocol can be improved is performance. It is a well-known fact that Java's performance is not as fast as natively compiled code. While this is okay for the purposes of this project, to be marketable, the protocol needs to be implemented using native code, or using Java combined with JNI, Java's Native Interface.

REFERENCES

1. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. 1998. Page 2.

2. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 2. http://www.webtechniques.com/archives/1997/08/pizzi/.

3. Ibid. Page 5.

4. Ibid.

5. Ibid. Page 3,5.

6. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". http://docs.rinet.ru/HTML4/ch27/ch27.htm.

7. Ibid.

8. Ibid.

9. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". http://docs.rinet.ru/HTML4/ch27/ch27.htm.

10. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. Page 1. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

11. "TCP/IP". Cisco Systems, Feb. 1996. http://www.cisco.com/warp/public/535/4.html.

12. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

13. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

14. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

15. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

16. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

17. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

18. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996. Page 525.

19. Ibid. Page 526.

20. Ibid.

21. Ibid. Page 527.

22. Ibid. Page 528.

23. Ibid.

24. Ibid. Page 529.

25. Ibid. Page 529.

26. Ibid. Page 530.

27. Ibid. Page 533.

28. Ibid. Page 534.

29. Ibid. Page 534.

30. Ibid. Page 534.

31. Ibid. Page 536.

32. Ibid. Page 536.

33. Ibid. Page 537.

34. Ibid. Page 537.

35. Ibid. Page 538.

36. Ibid. Page 538.

37. Ibid. Page 539.

38. Ibid. Page 541.

39. Ibid. Page 541.

40. Claypool, M. and Tanner, J. "The Effects of Jitter on the Perceptual Quality of Video". Computer Science Department, Worcester Polytechnic Institute, Oct. 5 1999.
41. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. 1998. Page 1.

42. Ibid. Page 3.

43. Claypool, M. and Tanner, J. "The Effects of Jitter on the Perceptual Quality of Video". Computer Science Department, Worcester Polytechnic Institute, 1999. Page 1.

44. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. 1998. Page 2.

45. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000. Page 1.

46. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. 1998. Page 3.

47. Ibid.

48. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996. Page 542.

49. Ross, K. and Kurose J."3.3 Connectionless Transport: UDP". 1996-2000. http://gaia.cs.umass.edu/kurose/transport/UDP.html. Page 1.
50. Ibid.

51. Ibid. Page 3.

52. "TeamSolutions: Streaming Multimedia Data". Page 3. http://www.teamsolutions.co.uk/streaming.html.

53. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 7. http://www.webtechniques.com/archives/1997/08/pizzi/.

54. Ibid.

55. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 4-5. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

56. "IETF working groups". Page 3. http://domen.uninett.no/~oak/foredrag/rsvp/.

57. "Resource Reservation Protocol (RSVP)". Page 2-3. http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/rsvp.htm.

58. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 6. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

59. "IETF working groups". Page 4.http://domen.uninett.no/~oak/foredrag/rsvp/.

60. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 7. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

61. Ibid.

62. Ibid. Page 11.

63. Ibid. Page 14.

64. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 10. http://www.webtechniques.com/archives/1997/08/pizzi/.

65. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 14. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

66. Ibid. Page 14.

67. Huuhtanen, Juha. "Real-Time Streaming Protocol (RTSP)". Page 4. http://www.tml.hut.fi/Studies/Tik-110.300/1998/Essays/rtsp.html.

68. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 10. http://www.webtechniques.com/archives/1997/08/pizzi/.

69. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". Page 2. http://docs.rinet.ru/HTML4/ch27/ch27.htm.

70. Ibid.

71. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 2. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

72. Ibid. Page 3-4.

73. Ibid. Page 4.

74. Ibid. Page 6.

75. Ibid.

76. Ibid. Page 12.

77. Bansal, D. and Balakrishnan, H. "TCP-friendly Congestion Control for Real-time Streaming Applications". M.I.T. Technical Report. M.I.T. Laboratory for Computer Science TR-806, May 2000. Page 1.

78. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000.

79. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. 1998. Page 6.

80. Bansal, D. and Balakrishnan, H. "TCP-friendly Congestion Control for Real-time Streaming Applications". M.I.T. Technical Report. M.I.T. Laboratory for Computer Science TR-806, May 2000. Page 8.

81. Ibid.

82. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000. Page 1.

83. Ibid. Page 2.

84. Ibid.

85. Ibid. Page 3.

86. Handley, M., Padhye, J., Floyd, S., Widmer, J. "TCP Friendly Rate Control (TFRC): Protocol Specification". Internet Engineering Task Force. Nov. 2000. http://www/aciri.org/mjh/draft-ietf-tsfrc-00.txt.

87. Ibid.

88. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

89. Dawson, Terry. NISTNet: Emulating Networks on Your Own LAN. O’Reilly, June 2000. http://www.oreillynet.com/lpt/a/264
90. Ibid.

91. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 6. http://www.webtechniques.com/archives/1997/08/pizzi/.

92. Ibid. Page 7.

93. Ibid.

Works Cited

1. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

2. "IETF working groups". http://domen.uninett.no/~oak/foredrag/rsvp/.

3. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". http://docs.rinet.ru/HTML4/ch27/ch27.htm.

4. "TeamSolutions: Streaming Multimedia Data". http://www.teamsolutions.co.uk/streaming.html.

5. Huuhtanen, Juha. "Real-Time Streaming Protocol (RTSP)". http://www.tml.hut.fi/Studies/Tik-110.300/1998/Essays/rtsp.html.

6. Schulzrinne, H., Rao, A., and Lanphier, R. "RFC2326". http://www/faqs.org/rfcs/rfc2326.html.

7. "Resource Reservation Protocol (RSVP)". http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/rsvp.htm.

8. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. http://www.webtechniques.com/archives/1997/08/pizzi/.

9. "Mobile and Wireless Overview: Real Time Streaming Protocol - RTSP". http://www.wheatstone.net/whatwedo/Portal/Standards/rtsp.htm.

10. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology.

11. Allan, M. and Falk, A. "On the Effective Evaluation of TCP". ACM Computer Communication Review, October 1999.

12. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000.

13. Watson, A. and Sasse, M. A. "The Good, the Bad, and the Muffled: the Impact of Different Degradations on Internet Speech". Department of Computer Science, University College London, London, WC1E 6BT, 2000.

14. Bansal, D. and Balakrishnan, H. "TCP-friendly Congestion Control for Real-time Streaming Applications". M.I.T. Technical Report. M.I.T. Laboratory for Computer Science TR-806, May 2000.

15. Claypool, M. and Tanner, J. "The Effects of Jitter on the Perceptual Quality of Video". Computer Science Department, Worcester Polytechnic Institute. 1999? 2000?

16. Chung, J. and Claypool, M. "Better-Behaved, Better-Performing Multimedia Networking". Computer Science Department, Worcester Polytechnic Institute. May, 2000.

17. "TCP/IP". Cisco Systems, Feb. 1996. http://www.cisco.com/warp/public/535/4.html.

18. "Networking". Integrated Data Processing, Inc. Jan. 2000. http://www/idp.net/sysinfo/networking.htm.

19. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

20. Ross, K. and Kurose J."3.3 Connectionless Transport: UDP". 1996-2000. http://gaia.cs.umass.edu/kurose/transport/UDP.html.
21. Garbee, B. "TCP/IP Tutorial". 1989.
22. Socolofsky, T. and Kale, C. "A TCP/IP Tutorial". Spider Systems Limited. Jan. 1991.

23. Gulati, Shvetima. "The Internet Protocol, Part One: The Foundations". AMC, Inc. Aug. 2000. http://www.acm.org/crossroads/columns/connector/july2000.html.
24. Handley, M., Padhye, J., Floyd, S., Widmer, J. "TCP Friendly Rate Control (TFRC): Protocol Specification". Internet Engineering Task Force. Nov. 2000. http://www/aciri.org/mjh/draft-ietf-tsfrc-00.txt.

25. Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S., "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification". Sep. 1997. http://www.cis.ohio-state.edu/htbin/rfc2205.html.

26. Dawson, Terry. NISTNet: Emulating Networks on Your Own LAN. O’Reilly, June 2000. http://www.oreillynet.com/lpt/a/264
27. NIST Net Home Page. National Institute of Standards and Technology, October 2000. http://snad.ncsl.nist.gov/itg/nistnet/
28. Special Edition Using CGI Chapter 18. QUE Corporation, 1996. http://www.lib.tsinghua.edu.cn/chinese/INTERNET/CGI/Cgi18fi.htm
29. Haynie, Nathan. Up and Running with Windows Media Technologies. Action Jackson, November 1999. http://www.actionjackson.com/articles/19991111/
 Source port	 Destination port

 Sequence number

			 Acknowledgement number

TCP header length Reserved URG ACK PSH RST SYN FIN Window size

 Checksum Urgent pointer

 Options (0 or more 32-bit words)

			 Data (optional)

RSVP

Daemon

Packet

Classifier

Admission

Control

Application

Policy

Control

Reservation request merges as it travels up the multicast tree.

Receiver

#3

Receiver

#2

Receiver

#1

Packet

Scheduler

Timeout

Threshold

Threshold

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

Page 1 of 63

_1040613334.xls
Test 1

		Time		TCP		TFRC		UDP

		1		91200		87542		358150

		2		274828		151996		640300

		3		214304		130832		659300

		4		228784		92352		657400

		5		220096		130832		659300

		6		225888		138528		638400

		7		228784		73112		659300

		8		205616		130832		659300

		9		222992		103896		657400

		10		222992		94276		659300

		11		222992		103896		638400

		12		217200		90428		659300

		13		208512		88504		649800

		14		220096		111592		659300

		15		225888		80808		657400

		16		220096		109668		638400

		17		222992		78884		659300

		18		199824		103896

		19		228784		90428

		20		214304		101972

		21		228784		100048

		22		217200		82732

		23		205616		100048

		24		220096

		25		128332

		Average:		212648		103352.260869565		635885.294117647

		Std. Dev.		34214.0954773516		20731.9087601201		72086.5837134108

Chart 1

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

P

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 1 Sending Rate

91200

87542

358150

274828

151996

640300

214304

130832

659300

228784

92352

657400

220096

130832

659300

225888

138528

638400

228784

73112

659300

205616

130832

659300

222992

103896

657400

222992

94276

659300

222992

103896

638400

217200

90428

659300

208512

88504

649800

220096

111592

659300

225888

80808

657400

220096

109668

638400

222992

78884

659300

199824

103896

228784

90428

214304

101972

228784

100048

217200

82732

205616

100048

220096

128332

Test 2

		Time		TCP		TFRC		UDP

		1		122466		32708		99750

		2		121632		39442		288800

		3		118736		52910		288800

		4		117288		63492		291650

		5		115840		20202		284050

		6		111496		74074		287850

		7		120184		41366		283100

		8		115840		48100		290700

		9		118736		45214		291650

		10		107152		51948		287850

		11		123080		36556		283100

		12		110048		54834		290700

		13		118736		48100		291650

		14		123080		54834		288800

		15		118736		39442		291650

		16		114392		60606		284050

		17		108600		37518		283100

		18		86880		59644

		19		117288		39442

		20		118736		54834

		21		120184		46176

		22		101360

		23		123080

		24		117288

		25

		Average:		115452.416666667		47687.7142857143		276897.058823529

		Std. Dev.		8203.4689158686		12071.3614855279		45768.0649804951

Chart 2

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 2 Sending Rate

122466

32708

99750

121632

39442

288800

118736

52910

288800

117288

63492

291650

115840

20202

284050

111496

74074

287850

120184

41366

283100

115840

48100

290700

118736

45214

291650

107152

51948

287850

123080

36556

283100

110048

54834

290700

118736

48100

291650

123080

54834

288800

118736

39442

291650

114392

60606

284050

108600

37518

283100

86880

59644

117288

39442

118736

54834

120184

46176

101360

123080

117288

Test 3

		Time		TCP		TFRC		UDP

		1		104470		0		73150

		2		143352		42328		278350

		3		75296		61568		285000

		4		169416		62530		287850

		5		130320		66378		285950

		6		98464		71188		287850

		7		95568		71188		280250

		8		176656		73112		286900

		9		127424		75998		285950

		10		41992		51948		278350

		11		41992		81770		287850

		12		94120		80808		280250

		13		52128		57720		286900

		14		73848		67340		285950

		15		118736		49062		278350

		16		112944		50986		287850

		17		141904		30784		285000

		18		143352		67340

		19		108600		34632

		20		152040		32708

		21		136112		75036

		22		114392		40404

		23		126260

		24		78192

		25		21720

		26		56472

		27		4344

		28		85432

		29		72400

		30		162176

		31		146248

		Average:		99402.08		58802.25		283963.636363636

		Std. Dev.		43983.531925933		20143.3142657903		51337.6291731284

Chart 3

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

		26		26		26

		27		27		27

		28		28		28

		29		29		29

		30		30		30

		31		31		31

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 3 Sending Rate

104470

0

73150

143352

42328

278350

75296

61568

285000

169416

62530

287850

130320

66378

285950

98464

71188

287850

95568

71188

280250

176656

73112

286900

127424

75998

285950

41992

51948

278350

41992

81770

287850

94120

80808

280250

52128

57720

286900

73848

67340

285950

118736

49062

278350

112944

50986

287850

141904

30784

285000

143352

67340

108600

34632

152040

32708

136112

75036

114392

40404

126260

78192

21720

56472

4344

85432

72400

162176

146248

_1040723261.doc
Project Number: 2CS-MLCMP00

Java-Based TFRC Protocol for Streaming Multimedia

A Major Qualifying Project Report:

submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

[image: image1.wmf]Test 1 Sending Rate

0

100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

P

Asima Silva

[image: image2.wmf]Test 2 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

Patrick Joseph Dato-on Stevens

[image: image3.wmf]Test 3 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

35

Time (sec)

Packets Sent

TCP

TFRC

UDP

Kevin Thorley

Date: Jan 10, 2001

Approved:

[image: image4.jpg][) eommies s sorver

=] 192.166.2.2 / 192.168.2.1

192.168.2.0 Subnet

Address / Gateway

192.168.2.1

Computers Have B DINO / router / NIST Net
pentium 133

64 MB RAM —

1.2 GB HD

10 BaseT Dlink e, SR .

RedHat Linux 6.2

192.168.1.0 Subnet

C] sansan / ciient

=| Hopiden 2] 192.068.0x1

Professor Mark Claypool, Major Advisor

TABLE OF CONTENTS

Page

Abstract………………………………………………………….……………………

3

1. Introduction……………………………………………………………….……….

4

 Table 1: Features of Internet Protocols……………………………….……….

6

2. Literature Review…………………………………………….…………...……….

9

 2.1 Multimedia on the Internet………………………………………..……….

9

 2.1.1 Real Audio……………………………………………………….

9

 2.1.2 Windows Media Player………………………………………….

10

 2.2 TCP……………………………………………………………….……….

10

 2.2.1 Segment………………………………………………….……….

12

 Table 2: TCP header…………………………………………..……….

13

 2.2.2 Connections……………………………………………..……….

15

 2.2.3 Window Management……………………….…………..……….

16

 2.2.4 Congestion Control………………………….…………..……….

17

 Graph 1: An example of the Internet congestion algorithm……………

19

 2.2.5 Timers……………………………………….…………..……….

19

 2.2.6 Problems with Streaming Applications and TCP……….……….

21

 2.3 UDP……………………………………………………………….……….

22

 2.4 Attempts at Multimedia Protocols………………………………..……….

24

 Diagram 1: RSVP Makes Reservations……………………….……….

25

 Diagram 2: Reservation Properties…………………………………….

26

 Diagram 3: RTP Packet Header……………………………….……….

27

 2.4.1 TFRC…………………………………………………….……….

29

 2.5 Routers…………………………………………………………………….

33

 2.6 Linux………………………………………………………….……….

35

 2.7 NistNet…………………………………………………………………….

36

3. Methodology…………………………………………………………..…………

38

 3.1 Java-Based TFRC…………………………………………………………..

38

 Diagram 4: Sample Run of an Application using Java-Based TFRC Protocol...

41

 3.2 TFRC Test Application…………………………………………………….

43

 3.3 Experimentation…………………………………………………………….

43

 3.4 Network Emulation Setup…………………………….……………………

44

 Diagram 5: The Test Environment…………………………………….……….

45

4. Results and Analysis……………………………………………………………….

47

 Table 3: Summary of Test Results

49

 Graph 2: Test 1 Sending Rate

50

 Graph 3: Test 2 Sending Rate

51

 Graph 4: Test 3 Sending Rate

52

 Ping Test………………………………………………………………………..

53

 TFRC Round Trip Time Results……………………………………………….

53

5. Conclusions……………………………………………………………….……….

54

6. Future Work……………………………………………………………………….

56

References……………………………………………………………………………

57

Work Cited…………………………………………………………………………...

62

Appendix A: JAVA-Based TFRC Implementation.…………………………………

i

Appendix B: TFRC Audio Application………………………………………………

xxix

Appendix C: Test Run Data…………………………………………………………..

xxxviii

Appendix D: Result Graph…………………………………………………………...

xlii

Abstract:

Transmission Control Protocol, TCP, and User Datagram Protocol, UDP, are inadequate for multimedia streaming on the Internet. TFRC eliminates TCP's drastic degradations in quality during network congestion by using an equation that determines its transmission rate and unlike UDP, TFRC implements “TCP-Friendly” congestion control to share bandwidth fairly. We implemented TFRC in Java and ran experiments on a WAN test-bed. We found TFRC excels in its overall performance of quality and fairness for multimedia streaming.

Chapter 1

Introduction

TCP-Friendly Rate Control, TFRC, proves to be a better multimedia protocol than the dominant Internet protocols today. While only being a proposed protocol, and thus not yet implemented in any of today's commercial Internet applications, it has the possibility of becoming the streaming standard. Since the current Internet protocols were not intended for streaming, they do not offer the features that streaming multimedia applications need. TFRC combines the advantages of the current Internet protocols and the features streaming multimedia implementations require.

The Internet was developed for the speedy transfer of data over long distances. It quickly began to offer more elaborate services such as search engines and maps as data protocols progressed. Now the transfer of audio over the Internet is also becoming popular. Many groups that offer services such as video/audio conferencing, music, and live newscasts or shows are in the process of developing a protocol that suit the needs of audio transfer. At this point in audio protocol development, there are several issues that need to be addressed. Transfer of real-time audio/video data requires much higher bandwidth that cannot be guaranteed or predicted in a congested network. The current protocols result in jumpy data streams. The quality of streaming data is greatly affected by bandwidth availability, receiver buffer size, and application buffer size1. Another issue of quality is audio sound, which is determined by the type of audio being transferred. The required caliber of transmission is strictly dependent on the type of media being listened to. Its quality depends on what the listener perceives is needed for that type of audio genre. For instance, real-time radio does not require as much audio quality as a real-time music competition where listeners would vote on the best performers.

Another issue that TFRC and other new audio protocols are aiming to solve is reliability. Streaming multimedia requires the rate of audio data transfer to remain relatively the same. Unfortunately, the quality of service over the Internet varies because network congestion determines the rate of transfer and packet arrival.

Like many other instances in life, cost is an issue. For instance radio listeners pay by flat rate but the companies providing the Webcasting service pay for simultaneous users, which is very expensive on their end. Cost determines which services become popular and which do not. This directly impacts the popularity of the protocols they run on.

Interestingly, a possible future issue is accessibility and portability. In most cases, using the Internet today requires a computer with access to a phone line. In order to increase the Internet multimedia consumption as there are advances in computer and communication hardware, audio capabilities must remain as portable in the future as they are today by concurrently advancing protocols as well.2

The dominant Internet protocol is TCP, Transmission Control Protocol. It provides three features, which may not necessarily be useful or desirable for multimedia applications. The first feature is packet sequencing, which sorts packets in order of arrival and indicates to the server which packets have been lost. It also guarantees reliability, by retransmitting data that has not been acknowledged by the client. This proves useless for streaming audio since late arrival of either lost or retransmitted data cannot be utilized. It also provides flow control; when the network is congested, all clients using TCP slowly decrease their use of the bandwidth. This is known as the "good neighbor policy," also usually undesirable for multimedia applications the way TCP implements it, since decreasing the bandwidth in the event of a congested network substantially decreases the quality in real-time audio transfer by creating drastic peaks in the transmission rate.3

Another protocol called User Datagram Protocol, UDP, is an alternative that is used for most streaming multimedia applications today. This protocol does not provide reliability or flow control. For these reasons, it does not adequately address the issues that audio applications on the Internet require.

[image: image5.wmf]Test 3 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

35

Time (sec)

Packets Sent

TCP

TFRC

UDP

Features:

Packet Sequencing

Reliability/ Retransmission(Undesirable for Streaming Multimedia)

Best Effort Delivery

(Desirable for Streaming Multimedia)

Flow Control: "good neighbor policy"

(Desirable for the Internet)

[image: image6.wmf]Test 2 Sending Rate

0

50000

100000

150000

200000

250000

300000

350000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

[image: image7.wmf]Test 1 Sending Rate

0

100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

Time (sec)

Packets Sent

TCP

TFRC

UDP

P

Protocols:

TCP

UDP

TFRC

Table 1: Features of Internet Protocols4

The development of web-audio technology is taking two paths. One of which is digital-audio data compression. It will allow more data to be transferred through smaller bandwidth. The other area is streaming multimedia. It aims to use the Internet for real-time audio/video, which requires uninterrupted transfer of bits.5

As part of the streaming multimedia development path, TFRC is a promising solution. It addresses the issues that were raised for TCP and UDP with respect to web-audio. One issue is the implementation of the good neighbor policy. TFRC is TCP-friendly because in the event of network congestion, it reduces its window size giving other applications a fair chance to use available network bandwidth without drastically changing the transmission rate like TCP does.

Many applications such as phone conversations on the Internet, movies, radio stations, mp3s, RealAudio, and online conferences use streaming multimedia protocols. A variety of audiences use these many services including college students, children, teachers, businessmen, and just about any other Internet user. Not only is multimedia used in specific applications, but many web pages include audio files to enhance their appeal and attract more users. Live shows on the Internet are also becoming popular. In all these situations, there is a need for a better multimedia protocol. This is where TFRC comes in.

Students, researchers, and multimedia protocol developers will probably find our implementation and conclusions helpful and interesting. Since TFRC has not been implemented, experiments such as ours will determine its survival and its potential in becoming a leading multimedia streaming protocol. Our findings will allow for modifications to be made in the future to the TFRC protocol with the goal of improving its performance; thus making it a truly viable replacement for TCP and UDP in the use of Internet-based multimedia streaming applications. TFRC's bandwidth fairness, its smooth standard deviation, and its congestion prevention strategy make it worth looking into as a replacement today. Future improvements can only make it a better protocol.

Chapter 2

Literature Review

2.1 Multimedia on the Internet

2.1.1 Real Audio

RealAudio, developed by Progressive Networks, is one of the first and most widely used streaming multimedia program on the Internet. It is used by hundreds of organizations ranging from radio and TV stations to news and financial services, downloaded by more than 8 million individuals6 to disseminate multimedia feeds over the Internet. RealAudio is considered a standard for multimedia in the Internet industry.

RealAudio uses a proprietary bi-directional, real-time, time-based protocol to communicate between a client/server architecture using UDP for its data stream and TCP for its control stream. The data stream is used to transmit sound/image data and control stream to negotiate proper bandwidth and track lost packets as well as the controls such as rewind, pause, stop, play, etc.

RealAudio uses a proprietary compression algorithm. The compression algorithm compresses at a rate of 8:1 for CD audio type quality and 64:1 for AM radio type quality.7 A compressed RealAudio clip can send at any compression rate lower than it, allowing for different bandwidths to transfer information. Because UDP is used to transmit data, some packets may be lost; RealAudio counteracts lost packets by using a loss correction system. The loss correction system allows for 2 – 5% packet loss with minimal degradation of quality and up to 10% packet loss for an “acceptable” quality level8.

RealAudio is a dependable, trusted, and proven multimedia program. It allows for all types of bandwidths to transfer data, however it is not responsive to network changes. Because it uses UDP, it is unfair and utilizes all available bandwidth without regard to network congestion.

2.1.2 Windows Media Player

Windows Media Player, similar to RealAudio in many ways, is Microsoft’s entry into real-time streaming multimedia. It is bi-directional, using UDP for a data stream and TCP for control stream. It has its own compression algorithm, which like RealAudio, is scalable for differing bandwidth machines. Since it uses UDP for transmitting data, it is unfair to other network traffic during congestion. Windows Media Player increases its priority setting when there is network congestion,9 thus becoming increasingly unfair. It allows for streaming multimedia at different bandwidths but at the expense of other network flows.

2.2 TCP

TCP (Transmission Control Protocol) is the dominant protocol used over the Internet today. TCP is a connection-orientated reliable protocol first devised by the Department of Defense to guarantee delivery of messages.10 It provides information about delivered packets to the sender by sending sequence numbers and acknowledgments.11 This allows TCP to arrange the data received by the client in the appropriate order.12 If data is lost or late, it retransmits data until it is received.

TCP is always associated with IP, an Internet protocol that is responsible for transmitting a packet of data from one router to another. Each router has a table with IP addresses matching the appropriate Ethernet. Several routers may contain the same IP entry creating a loop. If a packet is sent and lost, the packet is resent and can arrive by another route. Therefore, TCP is also robust and quickly recovers from physical damages, such as faulty phone lines. TCP became successful because it is used by three commonly utilized services: file transfer, electronic mail, and remote login.13

TCP is a byte stream; it does not preserve the original data boundaries. TCP breaks the data into smaller packets referred to as IP datagrams, which are usually 64k in size. The client is unaware the data was sent differently. When the client receives the data, TCP arranges the data in the appropriate order using the sequence numbers.14

Since TCP sends the data as smaller packets, it can either buffer the data or send it immediately. If there is very little data in the packet, TCP can buffer the data until it receives more to send at one time. This saves bandwidth. For immediate transmission, there is a special PUSH flag that indicates that the data must be sent immediately regardless of size. Similarly, when the user wants to delete or break the present process with CTRL-C, this data and any previously accumulating data is sent immediately as urgent.15

TCP is a unicast transmission control protocol. It does not implement multicasting or broadcasting. This protocol uses point-to-point connections, where there is only one server and one client with only one connection between them. TCP is also full duplex. This implies that the data can be sent from the server to the client and vice versa using the same connection simultaneously.16

Recently, the use of audio and video over the Internet has increased. Reliable connection-oriented protocols such as TCP have proven to be undesirable. Reliability, congestion control, and retransmissions are some of the reasons TCP is inappropriate for streaming applications.17

2.2.1 Segment

TCP sends and receives data in segments. Each segment has a twenty-byte TCP header as well as the data. However, the size range of the data part of the segment is restricted by two factors. The segment and the TCP header must be less than the IP restriction of 65,535 bytes. Usually, it is the maximum transfer unit (MTU) that defines the upper limit of the segment size. Each network has its own MTU. If the segment reaches a router for which its MTU is less, the segment is broken into smaller segments with new twenty byte IP headers for each. This adds more overhead, bandwidth, and segments.18

Table 2: TCP header19

TCP protocol has two headers, each of which is twenty bytes long. They are called the TCP header and the IP header. One of the TCP header fields is the source and destination port. These are used to identify the sender and receiver's IP address, port number, and socket number combinations. Another two fields in the TCP header are the sequence and acknowledgment numbers. Since every byte is numbered, these fields indicate the next byte expected. They are mainly used to guarantee that data is delivered in the correct order. Also, another field in the TCP header is the TCP header length, measured in 32 bit words. After the length specified in the segment, the data begins.

There are also six one-bit flags: the urgent pointer, the acknowledgement flag, the push flag, the reset flag, and the SYN and FIN flags which are used for connections. The urgent pointer indicates the byte offset where the urgent data begins. The acknowledgement flag indicates that an acknowledgment of the data is expected if it is set to 1, and ignored if it is set to 0. The push flag indicates that the TCP must pass the data to the client's application as soon as it is received and not to buffer it. The reset indicates there is a problem in the connection and the connection is released. The SYN flag is used when a connection is being created. By setting it to 1, the SYN flag indicates either connection request or acceptance. The use of the acknowledgement flag with the SYN flag distinguishes between request or acceptance states. Similarly, the FIN flag is used when a connection is being released.20

The window size field indicates how many bytes the receiver would like to receive. If the window size is 0, this indicates the receiver does not want to receive any data at that moment. When the receiver is ready, it will indicate this by "sending a segment with the same acknowledgment number and a non-zero window size."21

The checksum field is used to guarantee the arrival of the data without anything missing, corrupted, or lost. The options field provides a way to indicate any other connection information. For example, during connection setup, both sides use this field to define the maximum segment size it can accept. Therefore, both end hosts need not have the same segment size.22

Another two fields were proposed to decrease use of bandwidth and adjust when the network is congested. The window size option field allows the end hosts to either expand or contract the window size to improve the delay of data arrival and use of bandwidth. The other field is the selective repeat. It allows the receiver to specify that a segment was either damaged or lost and would like it to be resent. This is known as a NAK, negative acknowledgment. If segments that follow have arrived correctly, they can be acknowledged. Therefore, TCP protocol implements "go back n protocol" which resends the lost or damaged segment and all other following segments, regardless if they had already been received correctly. Thus the "go back n protocol" wastes bandwidth. These two fields, the window size option and selective repeat, were meant to improve TCP to make it a more efficient protocol for the Internet.23

2.2.2 Connections

TCP establishes a connection between two end hosts through a procedure known as the three-way handshake. When the server gets a connection request by a client it contains information such as "the IP address and port to which it wants to connect, the maximum TCP segment size it is willing to accept, and optionally some user data".24 The server checks if its specified port is being used, if so, it replies with the reset flag on in the TCP header. If the server wants to accept the connection request, it returns an acknowledgment segment to the client. The connection and acknowledgement requests use the SYN and ACK bits in the TCP header to differentiate between the two requests. This establishes a full duplex connection between the server and client.25

In releasing a TCP connection, one of the hosts sends a TCP segment with the FIN flag on. The other host accepts the request and sends its FIN segment and an acknowledgement of the first FIN flag. When the first host receives this, it sends an ACK back to the other host, and the connection is released. If a problem arises, the timers help in releasing the connection. The hosts have timers that are started when packets are sent. When ACK or FIN segments are lost or late due to congestion on the Internet the timer times out and appropriate actions are taken according to the type of packet sent. For example, if the second host never acknowledges the first's FIN segment and the first host's timer times out, the first host disconnects and the second host will eventually realize that the first host is not responding and also disconnects.26

2.2.3 Window Management

When sending data, the receiver indirectly determines the window size. In the initial setup of the connection, the receiver defines the segment size it can accept, this is known as its buffer size. When the sender sends a certain amount of data, the receiver sends the size of buffer space left along with the acknowledgment of the received data. The sender then readjusts its window size to the available buffer space and in accordance to bandwidth availability. Therefore it can send data up to its current window size. When the receiver's application reads the data, its buffer size is adjusted, and consequently so is the window size.27

When the window size is 0, the receiver's buffer space is full and the receiver cannot accept the data. There are only two conditions where the sender can send data when the window size is zero. The first condition arises when the sender wants to terminate a process; it can send a segment to the sender as urgent data. The second condition arises if the receiver announced its window size as 0, and the sender would like to know the receiver's next expected byte and its current window size status.28

When the window size changes, the sender is not obligated to send data or acknowledgements immediately. It can buffer the data that is to be sent and piggyback acknowledgments on data that will be transmitted in order to save bandwidth on the Internet. This results in fewer segments to send and less overhead, which in turn improves performance.29 Implementing Nagle's algorithm helps TCP's efficiency. Nagle's algorithm states: "when data comes into the sender one byte at a time, just send the first byte and buffer all the rest until the outstanding byte is acknowledged. If the user is typing quickly and the network is slow, a substantial number of characters may go in each segment, greatly reducing the bandwidth used. The algorithm additionally allows a new packet to be sent if enough data has trickled in to fill half the window or a maximum segment."30

Buffering data is sometimes undesirable, especially with interactive applications. This may pose a problem since, for interactive applications, data is sent as it is received. If the buffer has only one byte of buffer space available, it sends a segment with window size of 1. The sender sends one byte of data, and the receiver's buffer is full so it sends a window size of 0 and acknowledges the byte received. When the receiver reads a byte, it sends its available window size as 1 and the process repeats. This wastes bandwidth, results in overhead, and is inefficient. To solve this problem, TCP implements Clark's solution. It requires the sender to wait until a certain amount of buffer space is available to send a segment to update its window size. Together, Nagle's algorithm and Clark's solution work together to improve performance and save bandwidth.31

2.2.4 Congestion Control

Another issue for transport protocols is congestion control. Before, congestion was only detected when a packet was not acknowledged and it had to be retransmitted. A lost packet caused by congestion in comparison to a destroyed packet was undistinguishable. The only solution to a congested network was to decrease the packets transmitted.32

There are two reasons for a congested network, "network capacity and receiver capacity".33 The network capacity decreases as more packets are put on the network, regardless of receiver capacity. If the sender is transmitting packets while the network is congested, it only increases the delay and congestion of the network. The receiver capacity is determined by how fast the receiver's application can read the data it has received. No matter how congested the network is, if the receiver capacity is low, the packet will be delayed in being read and acknowledged. Therefore, there are two window sizes that are kept: receiver and congestion. The minimum of the two window sizes is the number of bytes the sender may transmit.34

Not only does TCP need to control its window size when congestion is detected, it also needs to be able to adjust its window size when the network is uncongested. TCP uses an algorithm known as slow start. It begins with a small window. If it is acknowledged before it times out, the window size is doubled. This process is repeated until the receiver's window size has reached the maximum possible size of the congestion window. "When the congestion window is n segments, if all n are acknowledged on time, the congestion window is increased by the byte count corresponding to n segments. In effect, each burst successfully acknowledged doubles the congestion window."35

Another parameter is the threshold, which is maintained as half the congestion window size. If a timeout occurs, slow start is implemented again, until the threshold window size is reached. After this point, the congestion window is increased linearly for every packet acknowledged. Therefore for every timeout, the congestion window size is reset, the threshold is decreased and TCP implements slow start resulting in bursty transmissions shown by spikes in its standard deviation.36

Congestion window (kilobytes)

44

40

36

32

28

24

20

16

12

8

4

0

0

2

4

6

8

10

12

14

16

18

20

22

Transmission number

Graph 1: An example of the Internet congestion algorithm.37

2.2.5 Timers

When a packet is lost or has not been acknowledged before it times out, the packet is retransmitted and a retransmission timer is started. If the retransmitted packet is lost again or is not acknowledged in time, it is retransmitted once more and the retransmission timer is reset. The timer length is very important because if the timer times out too quickly, the packets may be retransmitted unnecessarily, wasting bandwidth and congesting the network. If the timer time out duration is too long, it will delay in retransmitting the packet if it was lost.

There are several factors that determine and affect the timer. One factor, roundtrip time, is the time for the packet to be sent and the acknowledgment to arrive back to the sender. The roundtrip between the end hosts is obviously the minimum for the timer. If the timer is set lower than the roundtrip time, it will unnecessarily retransmit the packet because it has not given enough time for the acknowledgement to arrive. Therefore the timer must be set longer than the roundtrip time. Another factor is congestion on the network. Since the network is dynamic, the number of packets on the network determines how much delay the packet will encounter. Therefore the delay of the network must also be used in determining the timer length. Because the network is always changing, the timer cannot be constant; it must be dynamic since it too must adapt to the changes in network status.

TCP maintains a variable, the round trip time (RTT), to adapt to the changing network status for each connection. To maintain an accurate approximation of the roundtrip time, another variable is maintained; the time it takes for an acknowledgment to return, M. The formula that approximates the current RTT is RTT = alpha* RTT + (1- alpha) * M.38 Usually the alpha is set to 7/8 to smooth the difference in the old and new value.39

This leads to choosing a value for the retransmission timeout. For this, another variable D is used because usually choosing twice the RTT proves inadequate. D is calculated: D= alpha* D + (1-alpha) | RTT-M|. Using this value, the timeout variable is calculated as RTT + 4* D.

One problem arises in the event that the retransmission timer times out, it retransmits a packet and receives an acknowledgement of the first packet. How can TCP distinguish which packet is being acknowledged, the first packet or the retransmitted packet? Karn's algorithm provided a solution to this scenario. The timeout variable is doubled and RTT is not updated when a packet is retransmitted.

Another timer used by TCP is the persistence timer. Its function is to send a packet to determine the receiver's buffer size. If the buffer size is zero, the persistence timer resets itself. In order to determine the present receiver's buffer size, TCP waits until the timer times out to resend a packet. If the buffer size is nonzero, TCP sends a packet.

2.2.6 Problems with Streaming Applications and TCP

Real-time multimedia applications cannot tolerate late data. Since streaming applications are time dependent, lost or late data causes jitter in video and dead/white noise in audio applications. Therefore these types of applications do not need reliable delivery, only best-effort. Retransmitting data is usually unnecessary. If the retransmitted data does not arrive in time to be viewed or heard, it is not used.40 “Reliability through indefinite data retransmission is not desirable since streaming applications can often tolerate some degree of data loss, but can not usually tolerate the delay introduced by the retransmission of lost data.”41

Not only is reliable delivery undesirable because retransmitted data may not be used, it also delays the transmission of other data by wasting the network bandwidth.42 Therefore retransmitting data during network congestion delays the needed data for real-time streaming applications. This may result in more unusable late data. In most cases, retransmitted data causes more jitter and white noise.43

TCP’s congestion control scheme is also undesirable for streaming applications. Congestion implies that the client did not receive the data in time, the server did not receive the acknowledgment in time, or the packet was lost. If there is no detection of congestion over the network, TCP linearly increases its congestion window size. If it detects congestion, such as packet loss, it cuts its congestion window by half. This results in bursty data transmissions and in poor quality multimedia applications.44 “The congestion control mechanism used by TCP reacts to a single packet loss by halving its congestion window. This causes abrupt changes in the sending rate that are not appropriate for multimedia flows that require a smooth variation of the sending rate.”45 For smooth streaming applications, new congestion control algorithms that transmit data consistently are needed.

TCP guarantees reliability by retransmitting packets until the receiver receives it. This characteristic introduces problems when TCP is used for streaming applications. Late packets in real-time multimedia become useless.46 The delayed packets result in poor quality multimedia. These types of applications can tolerate some lost packets but not delayed packets. In essence, delayed packets become lost. 47

2.3 UDP

User Datagram Protocol is another protocol that is used on the Internet today. This protocol provides a way to send data without establishing a connection between the end hosts. This reduces the connection overhead that TCP introduces. The UDP segment header is 32 bits long (8 bytes). This header consists of the source and destination ports, the segment length, and the checksum.48

UDP only provides bare bone functions such as multiplexing/demultiplexing and error checking.49 Therefore most of the responsibility of transferring the data relies on the IP. After the header is attached to the data, "UDP takes messages from application process, attaches source and destination port number fields for the multiplexing/demultiplexing service, adds two other fields of minor importance, and passes the resulting 'segment' to the network layer. The network layer encapsulates the segment into an IP datagram and then makes a best-effort attempt to deliver the segment to the receiving host. If the segment arrives at the receiving host, UDP uses the port numbers and the IP source and destination addresses to deliver the data in the segment to the correct application process."50

UDP connectionless protocol has several advantages over TCP. Because there is no connection when using UDP, the delay is less than if TCP was used. UDP also does not maintain a connection state because it is a connectionless protocol. It does not provide a congestion control or maintain sender/receiver buffers. Therefore a server can cater to multiple clients and data can be sent as soon as it is produced by the application regardless of congestion and receiver buffers. Lastly, UDP has less overhead because it only has an 8-byte header while TCP has a 20-byte header.51

UDP is usually chosen for multimedia applications. Unlike TCP, UDP is capable of multicasting. The application sends data to the clients as it is received. It has the least delay since the data segments are sent without an established connection. This results in some packet loss, but less delay, which is more preferable for multimedia applications.

Since UDP does not have congestion control and no restricting sending rate, it is an undesirable protocol when the network is congested. Sending the data as it is produced without regard to the network status only wastes bandwidth and increases congestion and delay. When the network is congested, routers would merely discard packets resulting in lost packets and wasted bandwidth. With UDP putting more packets on the Internet, an undesirable cycle for multimedia applications is created.

2.4 Attempts at Multimedia Protocols

There are several protocols currently available for streaming multimedia: RSVP, RTP, RTCP, and RTSP. These available protocols, along with their development and features, will be discussed below.

RSVP, the Resource ReSerVation Protocol, allows the client to request a level of quality. To deliver this request, the protocol reserves the bandwidth at the router. This guarantees delivery at the requested quality. Xerox Corp.'s Palo Alto Research Center (PARC), MIT, and Information Sciences Institute of University of California (ISI) designed this protocol. Version 1 of RSVP Specification was approved in September 1997.52

RSVP is implemented by reserving network resources, such as bandwidth, CPU, and memory buffers. It negotiates the parameters with the routers and also maintains the router states in order to deliver the requested quality. The receiver makes a request with the quality of service (QoS) and maximum delay desired.53 It has two policies that implement this technique. The Policy control checks the permissions for making reservations while admission control determines if the routers have sufficient resources for the request. The client is either granted the bandwidth and quality requested or given a busy signal.54 A RSVP daemon communicates with the routers to determine the path. It sends the request, update, and control information to keep the reservation active. This allows the protocol to handle changing paths.55

 Diagram 1: RSVP Making Reservations56

RSVP provides three kinds of traffic: best effort, rate-sensitive, and delay sensitive. The quality of service determines the type of data flow. Rate-sensitive traffic, also known as guaranteed bit-rate service, guarantees transfer rate at the expense of time. It is used in applications such as videoconferencing. Delay sensitive traffic guarantees the delivery of data on time at the expense of a constant transfer rate. For non-real time data, it is referred to as controlled-delay service and for real-time data it is referred to as predictive service.57

RSVP is multimedia friendly. It is scalable since implementing IP multicast allows multiple users to join without increasing Internet traffic. It also guarantees the availability of resources. It is not a routing protocol, but a control protocol. The routing protocols that implement RSVP make the requests and determine the location of the receiver.58

Diagram 2: Reservation Properties59

There are several features of RSVP. Receivers initiate reservation requests. All the reservation states at the routers are soft states. RSVP sends refresh control messages to maintain the reservations. This allows RSVP to handle changing paths. RSVP's data flow travels in one direction because reservations are only made for the data to travel from the Webcasting server to the client. RSVP also supports multicast and unicast and is adaptable to changing routes. It can also handle different quality requests from the receivers. "The senders divide traffic in several flows, each is a separate RSVP flow with different level of QoS. Each RSVP flow is homogeneous and receivers can choose to join one or more flows."60 It is compatible running over both IPv4 and IPv6.61

The Internet Engineering Task Force (IETF) specifically developed Real-Time Protocol, RTP, for streaming multimedia. The protocol was derived from UDP. Therefore it offers UDP's multiplexing and checksum features. It primarily uses IP multicast but can also use unicast. It works with a control protocol called RTCP, Real-Time Control Protocol. The two features that RTP provide are timestamping and sequence numbering. These features are implemented using the RTP header, which precedes any packet of data. Timestamping helps to sort the data packets by time in order to play the audio or video correctly. The responsibility of synchronization, lost packet recovery, and congestion control relies on the application. Sequencing is used to place the data packets in correct order and to detect lost packets. The source identification function allows the client to know the location of the sender. Some header bits are used to indicate the type of audio encoding used.

Version

P

X

CSRC

M

Payload Type

Sequence Number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers

Diagram 3: RTP Packet Header62

RTCP, the Real-Time Control Protocol, is designed to work with RTP. An RTP session sends RTCP packets as control information, which communicates quality of data, and routing information. With the aid of the control packets, RTCP also provides several features that add reliability and flow control. It provides quality of service monitoring and congestion control. When the receiver sends feedback about congestion, RTCP adjusts its transmission rate. It also limits the control packet traffic to five percent of the session data packets and prevents the control information packets from congesting the network.

Real-time Streaming Protocol (RTSP) was proposed by Progressive Networks (RealNetworks), Netscape, and Columbia University in October 1996. After its specifications were submitted to the IETF, it has received many supporters such as Apple, IBM, Silicon Graphics, Vxtreme, and Sun.63 It provides similar HTTP text services to streaming multimedia. This protocol synchronizes multiple media objects such as "audio, video, still images, events, URLs, HTML pages, script commands and executable programs."64 It provides a functionality, which imitates a VCR such as pause, fast forward, and reverse. Therefore it is similar in syntax and functionality to HTTP. It was designed to use TCP as a transport layer for control but it can also support UDP. It bases its delivery mechanisms on RTP. Therefore it needs to maintain session states, as it does in RTP.65 "RTSP is an application level protocol designed to work with lower-level protocols like RTP or RSVP to provide a complete streaming service over Internet."66 It is used for servicing single unicast users and large multicast groups. It segments data into packets depending upon the bandwidth availability. When the client receives some packets, the client's application can play one packet while decompressing another and downloading a third at the same time. This allows the user to almost instantly listen without waiting for the whole file to arrive. RTSP supports three operations: "retrieval of media form the media server, invitation of a media server to a conference, and addition of media to an existing presentation."67

Microsoft has also shown its support for RTSP by producing its own rival protocol called Active Streaming Format (ASF). ASF includes both control and protocol functions. It implements redundant forward correction method with interleaved data to repair lost data without retransmissions.68

2.4.1 TFRC

Any new proposed protocol tries to be TCP friendly or TCP compatible since the prominent Internet protocol for most applications today is TCP. TCP-friendly is defined as such: "if its arrival rate does not exceed the arrival rate of a conformant TCP connection under the same circumstances."69 TCP compatible is defined as such: "a flow that behaves under congestion like a flow produced by a conformant TCP. A TCP-compatible flow is responsive to congestion notification, and in steady-state it uses no more bandwidth than a conformant TCP running under comparable conditions (drop rate, RTT, MTU, etc.)."70

One approach to streaming control protocols is rate-based feedback. It is a protocol that works with unicast and multicast applications. It improves the quality of streaming protocols by maintaining the packet loss ratio. This is accomplished by "the receiver continuously monitoring the quality of streams, such as received data rate or data loss ratio, and sends feedback messages back to the sender, who adjusts the data rate accordingly."71

There are two drawbacks to this approach. First, the feedback mechanism is time and state dependent. The feedback changes the data rate as soon as it reaches the sender. It is also state dependent because it takes time for the state of the protocol to change according to the feedback message. Second, the problem of network buffering is not addressed. Since the data rate is the only parameter controlled in this scheme, there is a possibility of overflowing the network buffer. These constraints allow TCP to be more aggressive, therefore giving the rate-based feedback mechanism a disadvantage.

A new protocol, SCP (Streaming Control Protocol), was proposed to improve quality of multimedia applications over the Internet. SCP is implemented on top of UDP. It has congestion control policies that determine the congestion window size. The sender outputs packets out at a rate of the size of the congestion window divided by the estimated round trip time. When a packet is sent, the sequence number of the packet is recorded and a timer is started. If the acknowledgment of the packet is received before or after the timer is timed out, the round trip time is adjusted accordingly. Any unacknowledged packets are not retransmitted, therefore saving bandwidth. This decreases congestion and round trip time by avoiding unnecessary packets being sent over the Internet. SCP maintains two variables more than TCP. They are the round trip time estimator and the time it takes for an acknowledgment to be received.72

"SCP tries to quickly discover how much buffering is appropriate for maximum throughput while avoiding excessive buffering, or buffer overflow and resultant packet loss."73 When SCP detects congestion, it implements an exponential back-off. It also has four states: slowStart, steady, congested, and paused. Unlike TCP, SCP has a steady state. In this state, the rate acknowledgments are received determines the congestion window size and uses all of the available bandwidth. This maintains "maximum throughput and minimum buffering"74. When congestion is detected, SCP enters the congested or paused state. These congestion control policies result in a smooth media applications. An indication that more bandwidth is available is when an acknowledgment is received. Thus, the window size is doubled. TCP, on the other had, reduces its congestion window by half when it detects congestion resulting in its usual jerky transmissions.

SCP detects congestion by a missing acknowledgment or the timer timeout. It then implements exponential back-off in two ways. It reduces the congestion window size multiplicatively and doubles the duration of the timer. The back-off is disabled and SCP enters a steady state when the first acknowledgement is received for a packet sent in the congested stage. When there are no packets to send, SCP enters a paused state and its bandwidth will slowly be discovered by other sessions competing for bandwidth.75

SCP is a better multimedia Internet protocol because it reduces jitter and latency caused by retransmissions. It uses acknowledgments to detect network congestion and if acknowledgements are lost, then the congestion window is adjusted accordingly. This allows other sessions using the bandwidth to share fairly.76

Another proposed solution for streaming protocols is using a binomial algorithm to adjust the window size. It is an improvement from TCP's implementation of using a linear congestion control for increasing the window size and using a multiplicative decrease for cutting the window size in half when congestion is detected. TCP uses an additive-increase/multiplicative decrease (AIMD) algorithm. Although more friendly than UDP, it is the most aggressive when competing for available bandwidth. This causes drastic changes in transmission rates. This is an undesirable characteristic for streaming applications since the quality also suffers because of it.77 "Multimedia flows… require a smooth variation of the sending rate."78

Two binomial algorithms were found to be suitable for multimedia applications because they do not respond well to drastic window size reductions. One algorithm is the inverse-increase/additive decrease (IIAD) which showed to be fair when competing for bandwidth with TCP.79 The other algorithm SQRT, resulted in larger window variations than IIAD but lesser than TCP. It also "converges to share of the bandwidth in fewer number of round-trip times than in the TCP-IIAD case."80 Therefore, binomial algorithms are more suited for streaming applications than the TCP AIMD used today.81

TCP Friendly Rate Control Protocol (TRFC) was proposed to improve congestion control over the Internet. One of its disadvantages is that it can only be used with fixed packet size. An extension to this proposal was made to use an equation based congestion control.82 This would allow variable size packets to be sent, which is more desirable for multimedia flows for two reasons. First, there is more end-to-end delay with large packet size. Second, if a packet is lost, it would result in quality degradation but the loss of small packet size data will not result in drastic quality variations.83

TFRC with variable packet size proposed to redefine the definitions of TCP-friendly and TCP-compatible. "A flow is TCP Compatible if it behaves under congestion like a flow produced by a conformant TCP. A TCP-compatible flow is responsive to congestion notification, and in steady-state it uses no more bandwidth than a conformant TCP using packets of size the MTU and running under comparable conditions (drop rate, RTT, MTU, etc.)."84 These modifications of the definitions attempt to make bandwidth sharing fair to both large and small packet sizes.85

The protocol uses the following equation to evaluate the transfer rate:

S

86

X = --

T * sqrt(p) * sqrt(2/3) * (1 + 9p * 288 * p * p * p)

Every packet loss indicates congestion regardless of packet size because routers do not pick which packets to drop. Therefore every packet is equally important in indicating congestion on the network.87

In the experimenting phase, TFRC flows take longer to react to congestion than TCP flows. Most applications have minimum and maximum sending rates. If the sending rate of the TFRC is below the application's minimum, it is better to stop sending or set the sending rate to the minimum rate requested by the application. At this point, if the protocol insists on sending at the application's minimum sending rate, the protocol has become unfair. Therefore, TFRC stops the flow and indicates it cannot provide the network service.

2.5 Routers

Routers operate in the network layer of the TCP/IP model. As the name implies, they are responsible for 'routing' IP packets. More specifically, they are responsible for routing packets between different subnets in an IP network. Along with this, routers also handle congestion control between subnets, allowing them to work between networks of varying speeds.

When a computer needs to send an IP packet to another machine, it first checks its own routing table. If the remote host is on the same subnet (as determined by its IP address and the subnet mask of the sending machine), it gets the remote MAC address, and sends the packet. However, if the remote machine is on a different subnet, the IP packet must go through one or more routers before reaching its destination. To do this, the sending machine checks its routing table for an entry that matched the destination. This entry contains the IP address of the appropriate router to send the packet to. When this router receives the packet, it starts the process over again, first checking its own routing tables, then sending the packet either to the destination if it is on the same subnet, or to another router. All of this is transparent to the user.

There are several algorithms in use by routers. Each has the goal of delivering the packet to the destination as efficiently as possible. Some examples of routing protocols are Shortest Path, Flow Based, and Distance Vector. Since networks, and the Internet in particular, often have changing topologies, the routing tables need to be updated to make sure they have current information.

Along with making sure that packets get to where they are going, routers take part in congestion control. Often, a router needs to deal with bottlenecks in a network. This occurs when the bandwidth on one side of the router is less than that on the other side. This could be caused by one network being faster than the other or several networks sending packets to a single network. In order to deal with this scenario, routers make use of several algorithms to control the congestion. Two of these are the Token Bucket and the Leaky Bucket. The Token bucket allows for transmission burst, while not penalizing the host, provided the average throughput from a given host stays below a given average. The Leaky Bucket maintains a queue of packets that are sent out as bandwidth allows. If too many packets show up in the queue, they are dropped, and never reach the host.

One problem with the Leaky Bucket algorithm is that it waits for the congestion to reach a critical point before taking any action. A solution to this is to use a protocol known as RED, or Random Early Detection. If RED sees that the network is about to become congested, it randomly drops packets to let the senders know that they should slow down their sending rate. This allows more packets to get through in the long run, but slows down the rate at which they are transmitted.

The method of dropping packets works well for TCP flows. A TCP flow recognizes this, and takes care of retransmission. It also cuts its transmit rate to account for the available bandwidth. UDP flows, on the other hand, do not respond to dropped packets. The sender just keeps sending packets without regard for how many are actually getting through. This is particularly a problem when a router is using RED.88

2.6 Linux

Linux is an open source, Unix-based operating system. Linus Torvalds, a student at the University of Helsinki, in Finland, developed it in 1994. Though Linux started out as a project for a class, it quickly grew into one of the most popular operating systems in the world. The Linux kernel is currently in version 2.4, and is contributed to by programmers throughout the world.

Two of the main reasons for the popularity of Linux are its built-in networking capabilities and the abundance of free software available for it. Like its Unix predecessors, networking is at the heart of the Linux OS. This, along with the fact that all this code is open source, has allowed programmers to implement almost all of the common network protocols on Linux. This capability has also allowed Linux machines to act as routers, running, among other protocols, RIP, BGP, and OSPF.

Like the Linux OS itself, many of the applications available on Linux are also open source. This allows programmers and users to have access to some of the best software there is, at little or no cost. This fact alone has made Linux a very popular platform for software development and research.

The recent port of the Java Development Kit to Linux has also increased the popularity of the OS. Now programmers are able to develop and run Java applications on Linux. In fact, several of the best Linux apps available, namely StarOffice and Forte for Java (a Java IDE) are written in Java.

2.7 NISTNet

NISTNet is a network emulation package designed by Mark Carson of the National Institute of Standards and Technology for the US government. The software requires a 486 PC with 16MB of RAM for a 10 Mbits/sec network running on a Linux operating system. “NISTNet allows network designers, application developers, and network researchers to ‘accurately’ emulate network performance conditions by a variety of networks and network paths.”89

NISTNet gives the advantages of simulations and live testing while downgrading their disadvantages. It is a tool, which can be used to test a network protocol’s specifications in an environment similar to the real world. Because it is similar to a simulation, the environment can be manipulated, recorded, and controlled, which is ideal for testing aspects of the network protocol.

A computer running NISTNet needs to be set as a router between two or more subnets. NISTNet runs as a module on the router replacing its normal IP forwarding mechanism and all of its components.90 The network administrator sets the addresses for which NISTNet administers. Since NISTNet acts on the administrator’s settings of a sender and receiver network pair, network control can be made either one way or two ways. This allows testing of a network environment in which the return travel has a different path.

NISTNet allows the network administrator to control several key issues in network routing such as the mean and standard deviation of network delay, percentage packet loss, percentage packet duplication, and bandwidth limitation. The network emulation package also allows the network administrator to control the queuing mechanism of the router and its queue sizes.

The administrator can manipulate, reproduce, and analyze the network simulated by NISTNet. The program tracks the number of bytes sent, current packets in the queue, average bandwidth for the last 10 seconds, explicit congestion notifications, number of packets duplicated, and number of packets dropped for a sender and destination address pair. NISTNet starts tracking when the destination and sender address pair is inserted. The system is adaptive, allowing variables to be changed and updated at any instance. NISTNet may be run using a graphical or text based interface.

Chapter 3

Methodology

3.1 Java-Based TFRC

Java-Based TFRC is a bi-directional, real-time, TCP-friendly, streaming multi-media protocol that runs in Java. It uses a data stream to send data and a control stream to track congestion, both of which use UDP as the underlying transport mechanism. The protocol allows for two-way communication between machines, using a single TFRCSocket. Java-Based TFRC functions are similar to Java’s implementation of a TCP connection.

An application implements Java-based TFRC by using TFRCServerSocket, TFRCSocket, TFRCInputStream, and TFRCOutputStream. TFRCSocket and TFRCServerSocket are used to connect machines and query its status similar to Java’s Socket and ServerSocket. TFRCSocket has a data stream and control stream for sending and receiving data and acknowledgements. Applications communicate using TFRCInputStream and TFRCOutputStream to access internal TFRCSocket buffers used for sending and receiving data.

Data streams send TFRCPackets, comprised of data as a byte array and a TFRCPacketHeader comprised of a time stamp and sequence number. Data streams use UDP because real-time multimedia needs to be received immediately with minimum delay and continuous ordered packets. Data is sent at a rate determined by TFRCCongestion, which uses the TFRC formula to calculate the sending rate and bandwidth. Once the allocated amount of time has passed between sends, TFRCSocket creates a TFRCPacket using data from an output buffer, which is then passed on to the data stream for sending. Once the receiving end of the data stream receives the packet it is passed on to the receiver’s TFRCSocket, which places the data into the input buffer and uses TFRCPacket Header for congestion information.

ControlStream sends AckWindowLists, comprised of a list of the last eight packets received from the sender. Once the TFRCSocket receives a TFRCPacket, it updates the AckWindowList for immediate departure by the control stream. Lost packets heavily affect TFRCCongestion and since the control stream uses UDP, some control stream packets may be lost. To counteract control stream lost packets, Java-Based TFRC keeps track of the last eight acknowledgments in case an ACKWindowList is dropped, thus minimizing unaccounted received packets.

TFRCSocket updates TFRCCongestion every time a valid TFRC Packet is received. The updated AckWindowList is passed on to TFRCCongestion to recalculate round trip time and loss event rate. An out of sequence packet is considered a lost packet and is discarded by Java-Based TFRC.

Once an application connects with another application using TFRCSocket and TFRCServerSocket, it sends received data through TFRCInputStreams and TFRCOutputStreams. These streams read and write to buffers in TFRCSocket. TFRCSocket writes to the data stream at a rate determined by TFRCCongestion, building a TFRCPacket from the output buffer. The data stream to the corresponding receiving data stream sends the packet. The data stream receives the packet and passes it on to the corresponding receiver’s TFRCSocket, which analyzes the TFRCPacketHeader and validates the TFRCPacket. A validated packet is split into two parts, the data is sent to the input buffer and the header is used to update the AckWindowList. The updated AckWindowList is passed on to control stream, which sends the packet to the corresponding control stream, then uses the packet to update TFRCCongestion.

SENDER

RECEIVER

Sending Application writes to

 Sending Buffer

TFRC Protocol queries

 Congestion Control for sending rate

Get Data from

 Sending Buffer and create TFRC Packet

Send TFRC Packet using

 Data Stream

Receive AckWindowList from

Control Stream

Congestion variables updated by

Congestion Control

Data Stream

receives TFRC Packet

AckWindowList

is updated

Control Stream

sends updated AckWindowList

Receiving Buffer

updated with TFRC Packet Data

Receiving Buffer

read by Receiver Application

Diagram 4: Sample run of an application using JAVA-Based TFRC Protocol

3.2 TFRC Test Application

The application used to test the functionality and performance of the Java-Based TFRC implementation is a streaming audio application written in Java, named AudioApp. It falls under the category of "intelligent" TFRC applications as it adjusts its behavior to compensate for changes in available bandwidth. In its current form, the application consists of a client/server architecture.

Unlike most other streaming audio applications, the AudioApp does not play the data it is receiving. Instead, it saves the data to a file, which can be played and analyzed at a later date. This allows a specific session to be captured, and the data itself to be examined.

The server side of the AudioApp reads in a raw audio file, and sends the data as a series of bytes through the TFRCSocket, making use of the TFRCOutputStream to do so. Before each send, the server queries the socket to obtain the available bandwidth. Based on the value it receives, it then decides on the audio quality to send the audio at. For example, if the audio was recorded at 44100 kHz, and the connection is too slow to handle this, the server may only send every other sample, cutting the quality down to 22050 kHz.

The client side of the AudioApp reads the data from a TFRCSocket through a TFRCInputStream. If necessary, the client pads the data with zeros, and writes it to a file. It decides how to pad based on the packet header sent by the server. For instance, if the server sends at 22050kHz, and the client is writing a file at 44100 kHz, then it will insert a 0 after every byte it receives.

The data sent between the client and server is simply an array of bytes, with a short header attached. This header contains the frequency of the data as an integer, and the sequence number as a short. The sequence number is used to pad the output file in case of lost packets.

3.3 Experimentation

The two dominating protocols of the Internet, UDP and TCP, are tested and compared with the new Java-based TFRC protocol. Comparisons between TCP and TFRC protocol will determine if TFRC’s implementation conforms to TCP’s congestion control, while the comparisons between UDP and TFRC will determine the new protocol’s quality control. TFRC is expected to react differently than TCP but have the same average bandwidth as TCP in the long run. TFRC is expected to have fewer packet drops than UDP but more than TCP.

Using NISTNet, the test is conducted individually for each of the three network protocols. Each protocol has an associated test program, which uses that protocol to send the audio data over the network. The results of the test were recorded for later analysis. This analysis included data such as transmission time, file integrity, packet loss, and sending rate. The standard deviation and mean delay, bandwidth, drop rate, drops, duplication rate, duplications, bytes sent, and packets sent were also recorded.

The data sent for the test was a raw audio file, created specifically for this test. The file is a sine wave, with frequency 440kHz, sampled at 16 bits with a frequency of 44100 MHz. This is approximately equal to CD-quality audio. The file used was 30 seconds long, which amounted to a file size of about 2.6MB.

Several methods were employed to record the results of the tests. First of all, each client printed a time stamp for every packet that was received. This gave the ability to record the transmission times. The other method used was monitoring the flows with tcpdump. Tcpdump is a Linux utility, which sets the network card in promiscuous mode, allowing the user to monitor all traffic that passes by. Setting tcpdump to only look at packets generated by a certain machine, and then parsing the file using java, many parameters could be tracked. The most significant advantage gained by using tcpdump was the ability to record data on the sending rate of each flow, and how it changed during the transmission.

The first set of tests was run on an uncongested network, running at 10Mb/s. The second and third sets were run on networks which were experiencing packet drop. The packet drop rates used were 5% and 20%, for tests 2 and 3 respectively. Each set of tests was run three times, and the results averaged.

3.4 Network Emulation Setup

The network emulation test bed was comprised of three computers. Each computer is a Pentium 133 with 64 MB of RAM, 10-Base-T Dlink Network Card, and a 1.2 GB HD. They all ran Red Hat Linux version 6.2 as their operating system.

The client machine, called BamBam, has an address of 192.168.2.2 with a gateway of 192.168.2.1. The server, called Pebbles, has an address of 192.168.1.2 with a gateway of 192.168.1.1. The router, named Dino, has two network cards with addresses, 192.168.1.1 and 192.168.2.1. Dino had routing capabilities installed in it in order to route between the two subnets. This was done using Linux Ipv4 packet forwarding.

Diagram 5: The Test Environment

NISTNet has two filters; one from client to server, denoted as CS, and the other from server to client, denoted SC. There are multiple settings, one of which is as near to a “perfect” network environment with minimum delay and no congestion. The settings for SC and CS were not always the same, allowing for testing on control stream and data streams separately.

Chapter 4

Results and Analysis

 Overall results of the test were as expected, though several problems were encountered. All of the result data are presented in Appendix C in the form of spreadsheets and graphs.

For the first test, Test 1, the protocols were tested with no network congestion. Both TFRC and TCP transmitted their data at about the same rate. In both cases, the transmission of the 30-second file took between 24 and 28 seconds or within the acceptable range to be considered real-time. Neither protocol exhibited any loss. This was the expected behavior of TCP, and the anticipated behavior of TFRC.

The UDP flow, on the other hand, did demonstrate a measurable amount of loss. Of the 2790 packets transmitted, about 143 were dropped. This is equivalent to approximately five percent of the total. Even though there was no congestion, there was some packet drop because the network ran on a 10Mb/s network.

In the second test case, Test 2, NISTNet was set to drop five percent of all packets received. The UDP protocol was the least affected by the changes in the Test 2 environment. The total transmission time for TCP and the number of drops experienced by UDP increased slightly. The drop percentage for UDP was approximately five percent, which was the amount set by the emulator for this test case.

The UDP flow was not immensely affected by Test 2's increase in drop rate. There was an increase in packet drops, more than TFRC’s. The transmission time held steady to what it had been in the first test, coming in around 18 seconds.

Test 3 provided the most interesting results of the set. TFRC behaved as expected, and was able to transmit its entire 30-second file in 28 seconds. This is considered an acceptable real-time transmission. The audio server responded to the congestion as anticipated when the data sampling rate was decreased as it was sent. Test 3 resulted in the file transferred in a timely manner, even though it was not at the highest quality. The total amount of packet drop for UDP was mush higher than TFRC. TCP, the reliable protocol, had no packet loss.

The TCP flow in Test 3 was adversely affected by the higher packet drop rate. The transmission time increased from 24 seconds to 34 seconds. Considering the fact that the file only represented a 30 second sound clip, this demonstrates one of the prime reasons that TCP is not acceptable for real-time streaming multimedia.

Packet Loss

Transmission Time

Test 1

Test 2

Test 3

Test 1

Test 2

Test 3

TCP

0

0

0

25

24

31

UDP

143

141

560

17

17

17

TFRC

2

53

130

23

21

22

Table 3: Summary of Test Results

Other than examining transmission time and packet loss, the sending rate for each protocol can also be analyzed. TFRC was designed to be TCP friendly, and designed to have a steadier sending rate than TCP. This analysis proves two features that TFRC was designed to implement succeeded.

Graph 2

A graph of the sending rate for the first test, with no congestion, shows that the UDP flow had the highest sending rate, and did not back off regardless of packet loss (which can be seen from the loss analysis). Both TCP and TFRC, on the other hand, had significantly lower sending rates, which was adjusted for the available bandwidth. It should also be noted that the sending rate for TFRC is lower than TCP, suggesting not only that the Java implementation of TFRC is TCP-friendly, but also that there is room to improve the performance of TFRC, while still remaining TCP-friendly.

Graph 3

The graph of the sending rate from the second test, with five percent packet drop, shows very similar results to the first test. As mentioned earlier, increased packet drop to five percent did not have much effect on the already slow 10Mb/s network. Like the results from the first test, these results show that UDP transmits with a steady, high rate, and does not take network congestion into account. Again, as in Test 1, the TCP and TFRC flows are both better behaved, and react to the packet drop by limiting their transmission rate.

Graph 4

The sending rate graph of Test 3 is the most interesting. This graph shows the sending rates for each protocol when there is a twenty percent packet drop rate. As in the previous two test cases, the UDP flow is steady, and transmits at a high rate. The difference in this test is in the behavior of TCP and TFRC. TFRC keeps the steady rate that it exhibited in the previous tests, but the sending rate for TCP is very unsteady. This shows TCP reacting to packet loss by increasing exponentially, then cutting its flow in half when it detects loss.

The graphs for the first and third tests clearly show the benefits of TFRC. Not only does TFRC prove itself to be TCP friendly, the last graph indicates that TFRC also adapts to packet drop much more smoothly than TCP does. Both of these are very important aspects of a network friendly multimedia protocol.

PING 192.168.2.2 (192.168.2.2) from 192.168.1.2 : 56(84) bytes of data.

64 bytes from 192.168.2.2: icmp_seq=0 ttl=254 time=1.1 ms

64 bytes from 192.168.2.2: icmp_seq=1 ttl=254 time=0.8 ms

64 bytes from 192.168.2.2: icmp_seq=2 ttl=254 time=0.8 ms

64 bytes from 192.168.2.2: icmp_seq=3 ttl=254 time=0.7 ms

64 bytes from 192.168.2.2: icmp_seq=4 ttl=254 time=0.7 ms

--- 192.168.2.2 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0.7/0.8/1.1 ms

Ping Test

Round Trip Time is 4 ms.

Round Trip Time is 4 ms.

Round Trip Time is 5 ms.

Round Trip Time is 4 ms.

Round Trip Time is 4 ms.

TFRC Round Trip Time Results

As one final way to see whether or not the difference in sending rate between TCP and TFRC was due to Java itself, we wrote a Java ping test. The results of this test were compared to the results of running ping on Linux. We found that ping took an average of 0.8ms, while the Java ping took 4ms. This gives some insight into why the sending rate was lower for TFRC than for TCP.

Chapter 5

Conclusions

There is a current need for a better performing real-time multimedia protocol. The two most popular Internet protocols that are currently being used, TCP and UDP, both have drawbacks when it comes to streaming multimedia transmission. On one hand, TCP gives reliable transmission, and behaves well with other network traffic, especially in congested situation. On the other hand, it does not provide a smooth and uninterrupted flow for streaming multimedia. UDP sends all packets without any regards to network congestion, insuring that data is sent at a constant rate. The problem arises when it does not react to network traffic, and tends to flood a network that is already congested. Many routers react to this by punishing UDP flows with dropped packets.

TFRC seems to be a solution to the problems inherent in the other two protocols. Like TCP, TFRC is a network friendly protocol, which adjusts its transmission rate to adjust for the available bandwidth. However, TFRC does not perform retransmissions. This leads to smoother multimedia streaming, as would be seen in a UDP flow. Also, TFRC provides a way for applications to get information on the available bandwidth, and adjust the sent data accordingly. By combining TFRC with an intelligent TFRC application, real time multimedia streaming can be accomplished, even over the limited bandwidth of wide area networks such as the Internet.

Since we implemented the TFRC protocol in Java, on a Linux platform, it allowed us to write code quickly, along with giving us access to the many networking tools available for Linux. The most notable among these tools was NISTNet, a network emulator tool. Along with the protocol, we developed an application to use it. This application, while not technically a streaming multimedia application, allowed us to evaluate the performance of the TFRC protocol by transmitting CD quality audio data over a simulated wide area network.

The results from out testing of our Java based TFRC protocol were very promising. The protocol behaved as planned, showing that it is both TCP friendly, and able to transmit audio smoothly, without the delay and jitter inherent in a TCP flow. We also found room for improvement of our code, as its sending rate could be increased, and still be at or below that of TCP. TFRC’s bandwidth fairness, its smooth standard deviation, and its congestion prevention strategy have proven it to be a great combination of both UDP’s level transmission rate and TCP’s Internet friendliness.

Chapter 6

Future Works

Currently, many techniques have been implemented and proposed that aim to guarantee quality and solve current day Internet problems. These techniques may be used with any protocol, such as with TCP or UDP, to increase in its quality during streaming audio transmissions.

One proposed technique is IP multicast that has been developed to handle large-scale real-time Webcasting. Instead of sending data to individual users logged onto a Webcasting server, the data is sent once to many users which preserves network bandwidth. This is accomplished by having the routers finding "the closest node that has the signal and replicating it, making the model scalable."91 IP multicast's problem, however, is that there is no two-way path between the server and user.92

Since real-time multimedia requires uninterrupted transfer of data, another technique known as forward error correction has been suggested. This technique transmits redundant data, so that if data is lost, it is interleaved with the redundant data, to improve audio/video quality. It requires more bandwidth for a given quality.93

The largest area where our Java-Based TFRC protocol can be improved is performance. It is a well-known fact that Java's performance is not as fast as natively compiled code. While this is okay for the purposes of this project, eventually the protocol would be better off implemented using native code, or using Java combined with JNI, Java's Native Interface.

More work can also be done on the application side. Now that there is a protocol in place which can provide the application with data about bandwidth, there are several ways for the application to react. The best way depends on the situation, and can be determined by doing user studies.

REFERENCES

1. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. Page 2.

2. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 2. http://www.webtechniques.com/archives/1997/08/pizzi/.

3. Ibid. Page 5.

4. Ibid.

5. Ibid. Page 3,5.

6. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". http://docs.rinet.ru/HTML4/ch27/ch27.htm.

7. Ibid.

8. Ibid.

9. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". http://docs.rinet.ru/HTML4/ch27/ch27.htm.

10. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. Page 1. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

11. "TCP/IP". Cisco Systems, Feb. 1996. http://www.cisco.com/warp/public/535/4.html.

12. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

13. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

14. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

15. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

16. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

17. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

18. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996. Page 525.

19. Ibid. Page 526.

20. Ibid.

21. Ibid. Page 527.

22. Ibid. Page 528.

23. Ibid.

24. Ibid. Page 529.

25. Ibid. Page 529.

26. Ibid. Page 530.

27. Ibid. Page 533.

28. Ibid. Page 534.

29. Ibid. Page 534.

30. Ibid. Page 534.

31. Ibid. Page 536.

32. Ibid. Page 536.

33. Ibid. Page 537.

34. Ibid. Page 537.

35. Ibid. Page 538.

36. Ibid. Page 538.

37. Ibid. Page 539.

38. Ibid. Page 541.

39. Ibid. Page 541.

40. Claypool, M. and Tanner, J. "The Effects of Jitter on the Perceptual Quality of Video". Computer Science Department, Worcester Polytechnic Institute, 1999.

41. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. Page 1.

42. Ibid. Page 3.

43. Claypool, M. and Tanner, J. "The Effects of Jitter on the Perceptual Quality of Video". Computer Science Department, Worcester Polytechnic Institute, 1999. Page 1.

44. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. Page 2.

45. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000. Page 1.

46. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. Page 3.

47. Ibid.

48. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996. Page 542.

49. Ross, K. and Kurose J."3.3 Connectionless Transport: UDP". 1996-2000. http://gaia.cs.umass.edu/kurose/transport/UDP.html. Page 1.

50. Ibid.

51. Ibid. Page 3.

52. "TeamSolutions: Streaming Multimedia Data". Page 3. http://www.teamsolutions.co.uk/streaming.html.

53. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 7. http://www.webtechniques.com/archives/1997/08/pizzi/.

54. Ibid.

55. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 4-5. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

56. "IETF working groups". Page 3. http://domen.uninett.no/~oak/foredrag/rsvp/.

57. "Resource Reservation Protocol (RSVP)". Page 2-3. http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/rsvp.htm.

58. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 6. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

59. "IETF working groups". Page 4.http://domen.uninett.no/~oak/foredrag/rsvp/.

60. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 7. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

61. Ibid.

62. Ibid. Page 11.

63. Ibid. Page 14.

64. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 10. http://www.webtechniques.com/archives/1997/08/pizzi/.

65. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 14. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

66. Ibid. Page 14.

67. Huuhtanen, Juha. "Real-Time Streaming Protocol (RTSP)". Page 4. http://www.tml.hut.fi/Studies/Tik-110.300/1998/Essays/rtsp.html.

68. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 10. http://www.webtechniques.com/archives/1997/08/pizzi/.

69. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". Page 2. http://docs.rinet.ru/HTML4/ch27/ch27.htm.

70. Ibid.

71. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". Page 2. http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

72. Ibid. Page 3-4.

73. Ibid. Page 4.

74. Ibid. Page 6.

75. Ibid.

76. Ibid. Page 12.

77. Bansal, D. and Balakrishnan, H. "TCP-friendly Congestion Control for Real-time Streaming Applications". M.I.T. Technical Report. M.I.T. Laboratory for Computer Science TR-806, May 2000. Page 1.

78. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000.

79. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. Page 6.

80. Bansal, D. and Balakrishnan, H. "TCP-friendly Congestion Control for Real-time Streaming Applications". M.I.T. Technical Report. M.I.T. Laboratory for Computer Science TR-806, May 2000. Page 8.

81. Ibid.

82. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000. Page 1.

83. Ibid. Page 2.

84. Ibid.

85. Ibid. Page 3.

86. Handley, M., Padhye, J., Floyd, S., Widmer, J. "TCP Friendly Rate Control (TFRC): Protocol Specification". Internet Engineering Task Force. Nov. 2000. http://www/aciri.org/mjh/draft-ietf-tsfrc-00.txt.

87. Ibid.

88. Tanenbaum, Andrew. Computer Networks. Prentice Hall PTR. New Jersey, 1996.

89. Dawson, Terry. NISTNet: Emulating Networks on Your Own LAN. O’Reilly, June 2000. http://www.oreillynet.com/lpt/a/264

90. Ibid.

91. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. Page 6. http://www.webtechniques.com/archives/1997/08/pizzi/.

92. Ibid. Page 7.

93. Ibid.

Works Cited

1. Liu, Chunlei. "Multimedia Over IP: RSVP, RTP, RTCP, RTSP". http://www.cis.ohio-state.edu/~cliu/ipmultimedia/.

2. "IETF working groups". http://domen.uninett.no/~oak/foredrag/rsvp/.

3. Brown, Mark R. and Morgan, Mike. "Special Edition Using HTML 4: Streaming Audio". http://docs.rinet.ru/HTML4/ch27/ch27.htm.

4. "TeamSolutions: Streaming Multimedia Data". http://www.teamsolutions.co.uk/streaming.html.

5. Huuhtanen, Juha. "Real-Time Streaming Protocol (RTSP)". http://www.tml.hut.fi/Studies/Tik-110.300/1998/Essays/rtsp.html.

6. Schulzrinne, H., Rao, A., and Lanphier, R. "RFC2326". http://www/faqs.org/rfcs/rfc2326.html.

7. "Resource Reservation Protocol (RSVP)". http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/rsvp.htm.

8. Pizzi, S. and Church, S. "Audio Webcasting Demystified". Aug. 1997. http://www.webtechniques.com/archives/1997/08/pizzi/.

9. "Mobile and Wireless Overview: Real Time Streaming Protocol - RTSP". http://www.wheatstone.net/whatwedo/Portal/Standards/rtsp.htm.

10. Shanwei, C., Pu, C., and Walpole, J. "Flow and Congestion Control for Internet Media Streaming Applications". Department of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology.

11. Allan, M. and Falk, A. "On the Effective Evaluation of TCP". ACM Computer Communication Review, October 1999.

12. Vassalo, Pedro R. "Variable Packet Size Equation-Based Congestion Control". International Computer Science Institute (ICSI), 2000.

13. Watson, A. and Sasse, M. A. "The Good, the Bad, and the Muffled: the Impact of Different Degradations on Internet Speech". Department of Computer Science, University College London, London, WC1E 6BT, 2000.

14. Bansal, D. and Balakrishnan, H. "TCP-friendly Congestion Control for Real-time Streaming Applications". M.I.T. Technical Report. M.I.T. Laboratory for Computer Science TR-806, May 2000.

15. Claypool, M. and Tanner, J. "The Effects of Jitter on the Perceptual Quality of Video". Computer Science Department, Worcester Polytechnic Institute. 1999? 2000?

16. Chung, J. and Claypool, M. "Better-Behaved, Better-Performing Multimedia Networking". Computer Science Department, Worcester Polytechnic Institute. May, 2000.

17. "TCP/IP". Cisco Systems, Feb. 1996. http://www.cisco.com/warp/public/535/4.html.

18. "Networking". Integrated Data Processing, Inc. Jan. 2000. http://www/idp.net/sysinfo/networking.htm.

19. Gilbert, H. "Introduction to TCP/IP". PC Lube and Tune. Feb. 1995. http://www/crg.cs.nott.ac.uk/~dxl/tcpip.htm.

20. Ross, K. and Kurose J."3.3 Connectionless Transport: UDP". 1996-2000. http://gaia.cs.umass.edu/kurose/transport/UDP.html.

21. Garbee, B. "TCP/IP Tutorial". 1989.

22. Socolofsky, T. and Kale, C. "A TCP/IP Tutorial". Spider Systems Limited. Jan. 1991.

23. Gulati, Shvetima. "The Internet Protocol, Part One: The Foundations". AMC, Inc. Aug. 2000. http://www.acm.org/crossroads/columns/connector/july2000.html.

24. Handley, M., Padhye, J., Floyd, S., Widmer, J. "TCP Friendly Rate Control (TFRC): Protocol Specification". Internet Engineering Task Force. Nov. 2000. http://www/aciri.org/mjh/draft-ietf-tsfrc-00.txt.

25. Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S., "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification". Sep. 1997. http://www.cis.ohio-state.edu/htbin/rfc2205.html.

26. Dawson, Terry. NISTNet: Emulating Networks on Your Own LAN. O’Reilly, June 2000. http://www.oreillynet.com/lpt/a/264

27. NIST Net Home Page. National Institute of Standards and Technology, October 2000. http://snad.ncsl.nist.gov/itg/nistnet/

28. Special Edition Using CGI Chapter 18. QUE Corporation, 1996. http://www.lib.tsinghua.edu.cn/chinese/INTERNET/CGI/Cgi18fi.htm

29. Haynie, Nathan. Up and Running with Windows Media Technologies. Action Jackson, November 1999. http://www.actionjackson.com/articles/19991111/

 Source port	 Destination port

 Sequence number

			 Acknowledgement number

TCP header length Reserved URG ACK PSH RST SYN FIN Window size

 Checksum Urgent pointer

 Options (0 or more 32-bit words)

			 Data (optional)

RSVP

Daemon

Packet

Classifier

Admission

Control

Application

Policy

Control

Reservation request merges as it travels up the multicast tree.

Receiver

#3

Receiver

#2

Receiver

#1

Packet

Scheduler

Timeout

Threshold

Threshold

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

Page 40 of 1

_1040613152.xls

Test 1

			Time			TCP			TFRC			UDP

			1			91200			87542			358150

			2			274828			151996			640300

			3			214304			130832			659300

			4			228784			92352			657400

			5			220096			130832			659300

			6			225888			138528			638400

			7			228784			73112			659300

			8			205616			130832			659300

			9			222992			103896			657400

			10			222992			94276			659300

			11			222992			103896			638400

			12			217200			90428			659300

			13			208512			88504			649800

			14			220096			111592			659300

			15			225888			80808			657400

			16			220096			109668			638400

			17			222992			78884			659300

			18			199824			103896

			19			228784			90428

			20			214304			101972

			21			228784			100048

			22			217200			82732

			23			205616			100048

			24			220096

			25			128332

			Average:			212648			103352.260869565			635885.294117647

			Std. Dev.			34214.0954773516			20731.9087601201			72086.5837134108

Chart 1

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

P

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 1 Sending Rate

91200

87542

358150

274828

151996

640300

214304

130832

659300

228784

92352

657400

220096

130832

659300

225888

138528

638400

228784

73112

659300

205616

130832

659300

222992

103896

657400

222992

94276

659300

222992

103896

638400

217200

90428

659300

208512

88504

649800

220096

111592

659300

225888

80808

657400

220096

109668

638400

222992

78884

659300

199824

103896

228784

90428

214304

101972

228784

100048

217200

82732

205616

100048

220096

128332

Test 2

			Time			TCP			TFRC			UDP

			1			122466			32708			99750

			2			121632			39442			288800

			3			118736			52910			288800

			4			117288			63492			291650

			5			115840			20202			284050

			6			111496			74074			287850

			7			120184			41366			283100

			8			115840			48100			290700

			9			118736			45214			291650

			10			107152			51948			287850

			11			123080			36556			283100

			12			110048			54834			290700

			13			118736			48100			291650

			14			123080			54834			288800

			15			118736			39442			291650

			16			114392			60606			284050

			17			108600			37518			283100

			18			86880			59644

			19			117288			39442

			20			118736			54834

			21			120184			46176

			22			101360

			23			123080

			24			117288

			25

			Average:			115452.416666667			47687.7142857143			276897.058823529

			Std. Dev.			8203.4689158686			12071.3614855279			45768.0649804951

Chart 2

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 2 Sending Rate

122466

32708

99750

121632

39442

288800

118736

52910

288800

117288

63492

291650

115840

20202

284050

111496

74074

287850

120184

41366

283100

115840

48100

290700

118736

45214

291650

107152

51948

287850

123080

36556

283100

110048

54834

290700

118736

48100

291650

123080

54834

288800

118736

39442

291650

114392

60606

284050

108600

37518

283100

86880

59644

117288

39442

118736

54834

120184

46176

101360

123080

117288

Test 3

			Time			TCP			TFRC			UDP

			1			104470			0			73150

			2			143352			42328			278350

			3			75296			61568			285000

			4			169416			62530			287850

			5			130320			66378			285950

			6			98464			71188			287850

			7			95568			71188			280250

			8			176656			73112			286900

			9			127424			75998			285950

			10			41992			51948			278350

			11			41992			81770			287850

			12			94120			80808			280250

			13			52128			57720			286900

			14			73848			67340			285950

			15			118736			49062			278350

			16			112944			50986			287850

			17			141904			30784			285000

			18			143352			67340

			19			108600			34632

			20			152040			32708

			21			136112			75036

			22			114392			40404

			23			126260

			24			78192

			25			21720

			26			56472

			27			4344

			28			85432

			29			72400

			30			162176

			31			146248

			Average:			99402.08			58802.25			283963.636363636

			Std. Dev.			43983.531925933			20143.3142657903			51337.6291731284

Chart 3

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

			26			26			26

			27			27			27

			28			28			28

			29			29			29

			30			30			30

			31			31			31

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 3 Sending Rate

104470

0

73150

143352

42328

278350

75296

61568

285000

169416

62530

287850

130320

66378

285950

98464

71188

287850

95568

71188

280250

176656

73112

286900

127424

75998

285950

41992

51948

278350

41992

81770

287850

94120

80808

280250

52128

57720

286900

73848

67340

285950

118736

49062

278350

112944

50986

287850

141904

30784

285000

143352

67340

108600

34632

152040

32708

136112

75036

114392

40404

126260

78192

21720

56472

4344

85432

72400

162176

146248

_1040613334.xls

Test 1

			Time			TCP			TFRC			UDP

			1			91200			87542			358150

			2			274828			151996			640300

			3			214304			130832			659300

			4			228784			92352			657400

			5			220096			130832			659300

			6			225888			138528			638400

			7			228784			73112			659300

			8			205616			130832			659300

			9			222992			103896			657400

			10			222992			94276			659300

			11			222992			103896			638400

			12			217200			90428			659300

			13			208512			88504			649800

			14			220096			111592			659300

			15			225888			80808			657400

			16			220096			109668			638400

			17			222992			78884			659300

			18			199824			103896

			19			228784			90428

			20			214304			101972

			21			228784			100048

			22			217200			82732

			23			205616			100048

			24			220096

			25			128332

			Average:			212648			103352.260869565			635885.294117647

			Std. Dev.			34214.0954773516			20731.9087601201			72086.5837134108

Chart 1

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

P

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 1 Sending Rate

91200

87542

358150

274828

151996

640300

214304

130832

659300

228784

92352

657400

220096

130832

659300

225888

138528

638400

228784

73112

659300

205616

130832

659300

222992

103896

657400

222992

94276

659300

222992

103896

638400

217200

90428

659300

208512

88504

649800

220096

111592

659300

225888

80808

657400

220096

109668

638400

222992

78884

659300

199824

103896

228784

90428

214304

101972

228784

100048

217200

82732

205616

100048

220096

128332

Test 2

			Time			TCP			TFRC			UDP

			1			122466			32708			99750

			2			121632			39442			288800

			3			118736			52910			288800

			4			117288			63492			291650

			5			115840			20202			284050

			6			111496			74074			287850

			7			120184			41366			283100

			8			115840			48100			290700

			9			118736			45214			291650

			10			107152			51948			287850

			11			123080			36556			283100

			12			110048			54834			290700

			13			118736			48100			291650

			14			123080			54834			288800

			15			118736			39442			291650

			16			114392			60606			284050

			17			108600			37518			283100

			18			86880			59644

			19			117288			39442

			20			118736			54834

			21			120184			46176

			22			101360

			23			123080

			24			117288

			25

			Average:			115452.416666667			47687.7142857143			276897.058823529

			Std. Dev.			8203.4689158686			12071.3614855279			45768.0649804951

Chart 2

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 2 Sending Rate

122466

32708

99750

121632

39442

288800

118736

52910

288800

117288

63492

291650

115840

20202

284050

111496

74074

287850

120184

41366

283100

115840

48100

290700

118736

45214

291650

107152

51948

287850

123080

36556

283100

110048

54834

290700

118736

48100

291650

123080

54834

288800

118736

39442

291650

114392

60606

284050

108600

37518

283100

86880

59644

117288

39442

118736

54834

120184

46176

101360

123080

117288

Test 3

			Time			TCP			TFRC			UDP

			1			104470			0			73150

			2			143352			42328			278350

			3			75296			61568			285000

			4			169416			62530			287850

			5			130320			66378			285950

			6			98464			71188			287850

			7			95568			71188			280250

			8			176656			73112			286900

			9			127424			75998			285950

			10			41992			51948			278350

			11			41992			81770			287850

			12			94120			80808			280250

			13			52128			57720			286900

			14			73848			67340			285950

			15			118736			49062			278350

			16			112944			50986			287850

			17			141904			30784			285000

			18			143352			67340

			19			108600			34632

			20			152040			32708

			21			136112			75036

			22			114392			40404

			23			126260

			24			78192

			25			21720

			26			56472

			27			4344

			28			85432

			29			72400

			30			162176

			31			146248

			Average:			99402.08			58802.25			283963.636363636

			Std. Dev.			43983.531925933			20143.3142657903			51337.6291731284

Chart 3

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

			26			26			26

			27			27			27

			28			28			28

			29			29			29

			30			30			30

			31			31			31

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 3 Sending Rate

104470

0

73150

143352

42328

278350

75296

61568

285000

169416

62530

287850

130320

66378

285950

98464

71188

287850

95568

71188

280250

176656

73112

286900

127424

75998

285950

41992

51948

278350

41992

81770

287850

94120

80808

280250

52128

57720

286900

73848

67340

285950

118736

49062

278350

112944

50986

287850

141904

30784

285000

143352

67340

108600

34632

152040

32708

136112

75036

114392

40404

126260

78192

21720

56472

4344

85432

72400

162176

146248

_1040590754.xls

Test 1

			Time			TCP			TFRC			UDP

			1			91200			87542			358150

			2			274828			151996			640300

			3			214304			130832			659300

			4			228784			92352			657400

			5			220096			130832			659300

			6			225888			138528			638400

			7			228784			73112			659300

			8			205616			130832			659300

			9			222992			103896			657400

			10			222992			94276			659300

			11			222992			103896			638400

			12			217200			90428			659300

			13			208512			88504			649800

			14			220096			111592			659300

			15			225888			80808			657400

			16			220096			109668			638400

			17			222992			78884			659300

			18			199824			103896

			19			228784			90428

			20			214304			101972

			21			228784			100048

			22			217200			82732

			23			205616			100048

			24			220096

			25			128332

			Average:			212648			103352.260869565			635885.294117647

			Std. Dev.			34214.0954773516			20731.9087601201			72086.5837134108

Chart 1

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

P

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 1 Sending Rate

91200

87542

358150

274828

151996

640300

214304

130832

659300

228784

92352

657400

220096

130832

659300

225888

138528

638400

228784

73112

659300

205616

130832

659300

222992

103896

657400

222992

94276

659300

222992

103896

638400

217200

90428

659300

208512

88504

649800

220096

111592

659300

225888

80808

657400

220096

109668

638400

222992

78884

659300

199824

103896

228784

90428

214304

101972

228784

100048

217200

82732

205616

100048

220096

128332

Test 2

			Time			TCP			TFRC			UDP

			1			122466			32708			99750

			2			121632			39442			288800

			3			118736			52910			288800

			4			117288			63492			291650

			5			115840			20202			284050

			6			111496			74074			287850

			7			120184			41366			283100

			8			115840			48100			290700

			9			118736			45214			291650

			10			107152			51948			287850

			11			123080			36556			283100

			12			110048			54834			290700

			13			118736			48100			291650

			14			123080			54834			288800

			15			118736			39442			291650

			16			114392			60606			284050

			17			108600			37518			283100

			18			86880			59644

			19			117288			39442

			20			118736			54834

			21			120184			46176

			22			101360

			23			123080

			24			117288

			25

			Average:			115452.416666667			47687.7142857143			276897.058823529

			Std. Dev.			8203.4689158686			12071.3614855279			45768.0649804951

Chart 2

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 2 Sending Rate

122466

32708

99750

121632

39442

288800

118736

52910

288800

117288

63492

291650

115840

20202

284050

111496

74074

287850

120184

41366

283100

115840

48100

290700

118736

45214

291650

107152

51948

287850

123080

36556

283100

110048

54834

290700

118736

48100

291650

123080

54834

288800

118736

39442

291650

114392

60606

284050

108600

37518

283100

86880

59644

117288

39442

118736

54834

120184

46176

101360

123080

117288

Test 3

			Time			TCP			TFRC			UDP

			1			104470			0			73150

			2			143352			42328			278350

			3			75296			61568			285000

			4			169416			62530			287850

			5			130320			66378			285950

			6			98464			71188			287850

			7			95568			71188			280250

			8			176656			73112			286900

			9			127424			75998			285950

			10			41992			51948			278350

			11			41992			81770			287850

			12			94120			80808			280250

			13			52128			57720			286900

			14			73848			67340			285950

			15			118736			49062			278350

			16			112944			50986			287850

			17			141904			30784			285000

			18			143352			67340

			19			108600			34632

			20			152040			32708

			21			136112			75036

			22			114392			40404

			23			126260

			24			78192

			25			21720

			26			56472

			27			4344

			28			85432

			29			72400

			30			162176

			31			146248

			Average:			99402.08			58802.25			283963.636363636

			Std. Dev.			43983.531925933			20143.3142657903			51337.6291731284

Chart 3

			1			1			1

			2			2			2

			3			3			3

			4			4			4

			5			5			5

			6			6			6

			7			7			7

			8			8			8

			9			9			9

			10			10			10

			11			11			11

			12			12			12

			13			13			13

			14			14			14

			15			15			15

			16			16			16

			17			17			17

			18			18			18

			19			19			19

			20			20			20

			21			21			21

			22			22			22

			23			23			23

			24			24			24

			25			25			25

			26			26			26

			27			27			27

			28			28			28

			29			29			29

			30			30			30

			31			31			31

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 3 Sending Rate

104470

0

73150

143352

42328

278350

75296

61568

285000

169416

62530

287850

130320

66378

285950

98464

71188

287850

95568

71188

280250

176656

73112

286900

127424

75998

285950

41992

51948

278350

41992

81770

287850

94120

80808

280250

52128

57720

286900

73848

67340

285950

118736

49062

278350

112944

50986

287850

141904

30784

285000

143352

67340

108600

34632

152040

32708

136112

75036

114392

40404

126260

78192

21720

56472

4344

85432

72400

162176

146248

_1040613152.xls
Test 1

		Time		TCP		TFRC		UDP

		1		91200		87542		358150

		2		274828		151996		640300

		3		214304		130832		659300

		4		228784		92352		657400

		5		220096		130832		659300

		6		225888		138528		638400

		7		228784		73112		659300

		8		205616		130832		659300

		9		222992		103896		657400

		10		222992		94276		659300

		11		222992		103896		638400

		12		217200		90428		659300

		13		208512		88504		649800

		14		220096		111592		659300

		15		225888		80808		657400

		16		220096		109668		638400

		17		222992		78884		659300

		18		199824		103896

		19		228784		90428

		20		214304		101972

		21		228784		100048

		22		217200		82732

		23		205616		100048

		24		220096

		25		128332

		Average:		212648		103352.260869565		635885.294117647

		Std. Dev.		34214.0954773516		20731.9087601201		72086.5837134108

Chart 1

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

P

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 1 Sending Rate

91200

87542

358150

274828

151996

640300

214304

130832

659300

228784

92352

657400

220096

130832

659300

225888

138528

638400

228784

73112

659300

205616

130832

659300

222992

103896

657400

222992

94276

659300

222992

103896

638400

217200

90428

659300

208512

88504

649800

220096

111592

659300

225888

80808

657400

220096

109668

638400

222992

78884

659300

199824

103896

228784

90428

214304

101972

228784

100048

217200

82732

205616

100048

220096

128332

Test 2

		Time		TCP		TFRC		UDP

		1		122466		32708		99750

		2		121632		39442		288800

		3		118736		52910		288800

		4		117288		63492		291650

		5		115840		20202		284050

		6		111496		74074		287850

		7		120184		41366		283100

		8		115840		48100		290700

		9		118736		45214		291650

		10		107152		51948		287850

		11		123080		36556		283100

		12		110048		54834		290700

		13		118736		48100		291650

		14		123080		54834		288800

		15		118736		39442		291650

		16		114392		60606		284050

		17		108600		37518		283100

		18		86880		59644

		19		117288		39442

		20		118736		54834

		21		120184		46176

		22		101360

		23		123080

		24		117288

		25

		Average:		115452.416666667		47687.7142857143		276897.058823529

		Std. Dev.		8203.4689158686		12071.3614855279		45768.0649804951

Chart 2

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 2 Sending Rate

122466

32708

99750

121632

39442

288800

118736

52910

288800

117288

63492

291650

115840

20202

284050

111496

74074

287850

120184

41366

283100

115840

48100

290700

118736

45214

291650

107152

51948

287850

123080

36556

283100

110048

54834

290700

118736

48100

291650

123080

54834

288800

118736

39442

291650

114392

60606

284050

108600

37518

283100

86880

59644

117288

39442

118736

54834

120184

46176

101360

123080

117288

Test 3

		Time		TCP		TFRC		UDP

		1		104470		0		73150

		2		143352		42328		278350

		3		75296		61568		285000

		4		169416		62530		287850

		5		130320		66378		285950

		6		98464		71188		287850

		7		95568		71188		280250

		8		176656		73112		286900

		9		127424		75998		285950

		10		41992		51948		278350

		11		41992		81770		287850

		12		94120		80808		280250

		13		52128		57720		286900

		14		73848		67340		285950

		15		118736		49062		278350

		16		112944		50986		287850

		17		141904		30784		285000

		18		143352		67340

		19		108600		34632

		20		152040		32708

		21		136112		75036

		22		114392		40404

		23		126260

		24		78192

		25		21720

		26		56472

		27		4344

		28		85432

		29		72400

		30		162176

		31		146248

		Average:		99402.08		58802.25		283963.636363636

		Std. Dev.		43983.531925933		20143.3142657903		51337.6291731284

Chart 3

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

		26		26		26

		27		27		27

		28		28		28

		29		29		29

		30		30		30

		31		31		31

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 3 Sending Rate

104470

0

73150

143352

42328

278350

75296

61568

285000

169416

62530

287850

130320

66378

285950

98464

71188

287850

95568

71188

280250

176656

73112

286900

127424

75998

285950

41992

51948

278350

41992

81770

287850

94120

80808

280250

52128

57720

286900

73848

67340

285950

118736

49062

278350

112944

50986

287850

141904

30784

285000

143352

67340

108600

34632

152040

32708

136112

75036

114392

40404

126260

78192

21720

56472

4344

85432

72400

162176

146248

_1040590754.xls
Test 1

		Time		TCP		TFRC		UDP

		1		91200		87542		358150

		2		274828		151996		640300

		3		214304		130832		659300

		4		228784		92352		657400

		5		220096		130832		659300

		6		225888		138528		638400

		7		228784		73112		659300

		8		205616		130832		659300

		9		222992		103896		657400

		10		222992		94276		659300

		11		222992		103896		638400

		12		217200		90428		659300

		13		208512		88504		649800

		14		220096		111592		659300

		15		225888		80808		657400

		16		220096		109668		638400

		17		222992		78884		659300

		18		199824		103896

		19		228784		90428

		20		214304		101972

		21		228784		100048

		22		217200		82732

		23		205616		100048

		24		220096

		25		128332

		Average:		212648		103352.260869565		635885.294117647

		Std. Dev.		34214.0954773516		20731.9087601201		72086.5837134108

Chart 1

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

P

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 1 Sending Rate

91200

87542

358150

274828

151996

640300

214304

130832

659300

228784

92352

657400

220096

130832

659300

225888

138528

638400

228784

73112

659300

205616

130832

659300

222992

103896

657400

222992

94276

659300

222992

103896

638400

217200

90428

659300

208512

88504

649800

220096

111592

659300

225888

80808

657400

220096

109668

638400

222992

78884

659300

199824

103896

228784

90428

214304

101972

228784

100048

217200

82732

205616

100048

220096

128332

Test 2

		Time		TCP		TFRC		UDP

		1		122466		32708		99750

		2		121632		39442		288800

		3		118736		52910		288800

		4		117288		63492		291650

		5		115840		20202		284050

		6		111496		74074		287850

		7		120184		41366		283100

		8		115840		48100		290700

		9		118736		45214		291650

		10		107152		51948		287850

		11		123080		36556		283100

		12		110048		54834		290700

		13		118736		48100		291650

		14		123080		54834		288800

		15		118736		39442		291650

		16		114392		60606		284050

		17		108600		37518		283100

		18		86880		59644

		19		117288		39442

		20		118736		54834

		21		120184		46176

		22		101360

		23		123080

		24		117288

		25

		Average:		115452.416666667		47687.7142857143		276897.058823529

		Std. Dev.		8203.4689158686		12071.3614855279		45768.0649804951

Chart 2

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 2 Sending Rate

122466

32708

99750

121632

39442

288800

118736

52910

288800

117288

63492

291650

115840

20202

284050

111496

74074

287850

120184

41366

283100

115840

48100

290700

118736

45214

291650

107152

51948

287850

123080

36556

283100

110048

54834

290700

118736

48100

291650

123080

54834

288800

118736

39442

291650

114392

60606

284050

108600

37518

283100

86880

59644

117288

39442

118736

54834

120184

46176

101360

123080

117288

Test 3

		Time		TCP		TFRC		UDP

		1		104470		0		73150

		2		143352		42328		278350

		3		75296		61568		285000

		4		169416		62530		287850

		5		130320		66378		285950

		6		98464		71188		287850

		7		95568		71188		280250

		8		176656		73112		286900

		9		127424		75998		285950

		10		41992		51948		278350

		11		41992		81770		287850

		12		94120		80808		280250

		13		52128		57720		286900

		14		73848		67340		285950

		15		118736		49062		278350

		16		112944		50986		287850

		17		141904		30784		285000

		18		143352		67340

		19		108600		34632

		20		152040		32708

		21		136112		75036

		22		114392		40404

		23		126260

		24		78192

		25		21720

		26		56472

		27		4344

		28		85432

		29		72400

		30		162176

		31		146248

		Average:		99402.08		58802.25		283963.636363636

		Std. Dev.		43983.531925933		20143.3142657903		51337.6291731284

Chart 3

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

		26		26		26

		27		27		27

		28		28		28

		29		29		29

		30		30		30

		31		31		31

TCP

TFRC

UDP

Time (sec)

Packets Sent

Test 3 Sending Rate

104470

0

73150

143352

42328

278350

75296

61568

285000

169416

62530

287850

130320

66378

285950

98464

71188

287850

95568

71188

280250

176656

73112

286900

127424

75998

285950

41992

51948

278350

41992

81770

287850

94120

80808

280250

52128

57720

286900

73848

67340

285950

118736

49062

278350

112944

50986

287850

141904

30784

285000

143352

67340

108600

34632

152040

32708

136112

75036

114392

40404

126260

78192

21720

56472

4344

85432

72400

162176

146248

