PARTIE 2 - LE LANGAGE PROCEDURAL D’ORACLE :
LE LANGAGE PL/SQL

I – LES CURSEURS EN PL/SQL

Dès l’instant où on exécute une instruction SQL, il y a création d’un curseur implicite : c’est une zone de travail qui contient des informations permettant l’exécution d’un ordre SQL.

Un curseur explicite est un curseur décrit et généré au niveau de la procédure ainsi pour traiter une requête qui retourne plusieurs lignes, l'utilisateur doit définir un curseur qui lui permet d'extraire la totalité des lignes sélectionnées.

L'utilisation d'un curseur nécessite 4 étapes :

1. Déclaration du curseur
: Section DECLARE

2. Ouverture du curseur
: Section BEGIN

3. Traitement des lignes
: Section BEGIN

4. Fermeture du curseur
: Section BEGIN OU EXCEPTION

1. La déclaration d'un curseur

La déclaration du curseur permet de stocker l'ordre Select dans le curseur.

Le curseur se définit dans la partie Declare d'un bloc PL/Sql.

Cursor nomcurseur IS Requete_SELECT ;

Declare

 Cursor DEPT10 is

 select ename, sal from emp where deptno=10 order by sal ;

Begin

 ;

 End ;

2. L'ouverture du curseur

L’ouverture du curseur réalise :

1. l'allocation mémoire du curseur

2. l'analyse sémantique et syntaxique de l'ordre

3. le positionnement de verrous éventuels (si select for update...)

C’est seulement à l’ouverture du curseur que la requête SQL s’éxécute.

L'ouverture du curseur se fait dans la section Begin du Bloc.

OPEN nomcurseur ;

Declare

 Cursor DEPT10 is

select ename, sal from emp where deptno=10 order by sal ;

Begin

...Open DEPT10;

.....

End ;

3. Traitement des lignes

Après l'exécution du Select les lignes ramenées sont traitées une par une, la valeur de chaque colonne du Select doit être stockée dans une variable réceptrice définie dans la partie Declare du bloc. Le fetch ramène une seule ligne à la fois, pour traiter n lignes il faut une boucle.

FETCH nomcurseur INTO liste_variables ou Nom_enregistrement;

create table resultat (nom1 char(10), sal1 number(7,2))

/

Declare
-- programme plsql_ex5.sql

 Cursor DEPT10 is
select ename, sal from emp where deptno=20 order by sal ;

-- variables réceptrices

 nom emp.ename%TYPE; -- Variable locale de même type que le champ ename

 salaire emp.sal%TYPE;

Begin

 Open DEPT10;

 Fetch DEPT10 into nom, salaire ;

-- Lecture 1° tuple

 WHILE DEPT10%found
loop

-- Tant qu’on trouve une ligne

 If salaire > 2500 then

 insert into resultat values (nom,salaire);

 end if;

 Fetch DEPT10 into nom,salaire ;
 -- Lecture tuple suivant

 end loop;

 Close DEPT10;

End ;

/

select * from resultat

/

drop table resultat

/

[image: image1.png]Script majliv.sql.

rem Livraison des commandes et mise a jour des stocks

rem Cresticn de la table TEMOIN

create table CDELIV (NOCDE number(6) , TEXTE char(60))
/

rem Bloc de mise a jour

DECLARE

cursor C_cde is select COMMANDES.NOCDE, REFART,QTECDE
from COMMANDES, LIGNESCDE
where COMMANDES.ETATCDE = ‘EC’
and COMMANDES.NOCDE = LIGNESCDE.NOCDE
order by COMMANDES.NOCDE;

V_cde C._cdeSROWTYPE;
v_qtestk ARTICLES.QTESTKSTYPE;
v_nvqte number (9} ;
V_texte char{60);
V_err BOOLEAN;
V_cderef COMMANDES.NOCDEMSTYPE;
BEGIN
open C_cde; -- EXECUTION DU CURSEUR
fetch C_cde into V_cde; -- LECTURE lere LIGNE
<Bcde>
while C_cdeSFOUND loop
V_cderef :z V_cde.NOCDE; -- DEBUT DE COMMANDE

V_err := FALSE;
V_texte := ‘Probleme sur article(s) : ‘;

commit;

<Blig>

while C_cdeSFOUND and V_cde.NOCDE = V_cderef loop
select QTESTK into V_qtestk -- TRAITEMENT DE LIGNE

from ARTICLES
where REFART = V_cde.REFART;
v_nvqte :>= V_qgtestk - V_cde.QTECDE;
if V_nvqgte = 0 then ~-- STOCK OK
update ARTICLES set QTESTK = V_nvqte
where REFART = V_cde.REFART;
else -- STOCK pas OK
V_texte :=

rtrim(v_texte)]|’ ‘||rtrim(V_cde.REFART);
V_err := TRUE;
end if;
fetch C_cde into V_cde; -- LECTURE LIGNE SUIVANTE
end loop Blig;
if V_err then -- FIN DE COMMANDE:Validation ou Annulatiol
rollback;
insert into CDELIV values (V_cderef , V_texte);
commit;

else
update COMMANDES set ETATCDE = ‘LI’
where NOCDE = V_cderef;
V_texte :r ‘Commande livree completement’:;
insert into CDELIV values (V_cderef, V_texte);
commit;
end if;
end loop Becde
close C_cde; -- FIN DE BLOCK
END;
/
rem Consultation ds la table temoin
select * from CDELIV
/
drop table CDELIV
/

 SQL> @ ../gautier/plsql_ex5

Table créée.

Procédure PL/SQL terminée avec succès.

NOM1 SAL1

---------- ---------

JONES 2975

SCOTT 3000

FORD 3000

Table supprimée.

Attributs :
Explication :

 Nomcurseur%Found
Vrai si exécution correcte de l’ordre SQL

 Nomcurseur%Notfound
Vrai si exécution incorrecte de l’ordre SQL

 Nomcurseur%Isopen
Vrai si curseur ouvert

 Nomcurseur%Rowcount
Donne la nième ligne traitée

Les attributs d'un curseur sont des indicateurs sur l'état d'un curseur. Ils nous fournissent des informations quant à l'exécution de l'ordre. Elles sont conservées par Pl/Sql après l'exécution du curseur.

Ces attributs permettent de tester directement le résultat de l'exécution. Tous les attributs ont un nom.

4. La fermeture du curseur

Après le traitement des lignes, l'étape de fermeture permet d'effectuer la libération de la place mémoire.

CLOSE nomcurseur

Close dept10 ;
4. Complément : Utiliser une variable de type enregistrement

1° solution : Nom-de-variable nom_table%rowtype;

Correspond à la déclaration d’une variable de même type que l’enregistrement (= le tuple = la ligne) de la table.

DECLARE

LigFleur
FLEURS%ROWTYPE ;

X

number(10,3) ;

BEGIN

SELECT
* INTO LigFleur where nofleur=10; -- 1 seule ligne

 X := LigFleur.Prx *1.1 ;
-- On peut accéder à chaque champ de l’enregistrement

Dans un contexte curseur (résultat du select >1 tuple), l’attribut rowtype permet la déclaration implicite d’une structure dont les éléments sont d'un type identique aux colonnes ramenées par le curseur.

Dans la partie déclarative du bloc.
Cursor nomcurseur is ordre_select ;

nom_structure nomcurseur%ROWTYPE;

Les éléments de la structure sont identifiés par : nom_structure.nomcolonne

La structure est renseignée par le Fetch :
Fetch nomcurseur into nom_structure;

Au préalable afin de bien tester le programme ci-dessous, sous SQL*PLUS

SQL> update pilote

set comm = null where nopilot='1243'

create table resultat (nom1 char(35), sal1 number(8,2))

/

-- Programme Plsql_ex6.sql

Declare

 Cursor C1 is select * from pilote where adresse='Paris';

-- variable réceptrice

 unpilot pilote%rowtype;

Begin

 Open C1;

 Fetch c1 into unpilot ; -- Lecture 1° tuple

 WHILE C1%found

 loop

 If unpilot.comm is not null then

 insert into resultat values (unpilot.nompilot, unpilot.salpilot);

 end if;

 Fetch c1 into unpilot ; -- Lecture tuple suivant

 end loop;

 Close c1;

End ;

/

select * from resultat

/

drop table resultat

/

2° solution : Déclarer un type enregistrement

TYPE nom_enregistrement IS RECORD

(Nom-de-champ1 type,

 Nom-de-champ2 type,

 ) ;

-- Déclaration d’une variable de ce type

 Une-Variable nom_enregistrement ;

create table resultat(nom1 char(35), sal1 number(8,2))

/

-- Programme PLSQL_EX7.sql --

DECLARE

Type EngPilote IS Record

 (nom_pilote pilote.nompilot%type,

 revenu_pilote pilote.salpilot%type);

Unpilot EngPilote;

BEGIN

-- Exemple d'affectation

Unpilot.nom_pilote := 'DUPUY';

-- ou Recherche d'un pilote

-- 1 seule ligne pas de curseur

SELECT nompilot,salpilot INTO Unpilot from pilote

where nopilot = '7100';

 if unpilot.nom_pilote is not NULL then

Insert into resultat

values(unpilot.nom_pilote, unpilot.revenu_pilote);

 end if ;

END;

/

select * from resultat

/

drop table resultat

5. Exercices d’application

1. Ecrire tous les programmes donnés dans cette partie et les tester. Adapter les tuples des tables afin de passer en revue les différentes possibilités

2. Ecrire le programme PLSQL_EX8.sql qui permet de retrouver tous les pilotes de Paris ayant une commission non null en déclarant le type d’enregistrement avec RECORD.

3. Vous avez ci-dessous un programme PL/SQL et les tables d’origine. Etudiez ce programme, expliquez succinctement son but et donnez les lignes affichées à la fin de son exécution ainsi que le contenu des deux tables d’origine.

[image: image2.png]SQL> select * from ARTICLES:

REFART DESIGNATION PRIXUNITHT
ABO3. Carpettes 150
AB10 Tapis de Chine 1500
ABR22 Tapis Persans 1250.1
CD50 Chaine HIFI 735.4
2210 Lot de planchettes 1500
cp21 Platine laser S00
2Z01 Lot de carpettes 500

7 ligne(s) selectionnee(s).
SQL> select * from CDE;

NOCDE ET REFART QTECDE

1301 EC ABO3 5
1250 EC ABO2 8
1210 EC AB10 3
1210 EC CD50 4
1230 EC AB10O 20

108
100
150

[image: image3.png]-
EpLACE
st

II – MODIFICATION DE DONNEES

Les modifications de données s’effectuent normalement par les instructions SQL : INSERT, UPDATE et DELETE comme nous avons pu le remarquer dans le programme ci-dessus d’exercice : majliv.sql.

PL/SQl permet la possibilité d’utiliser l’option CURRENT OF nom_curseur dans la clause WHERE des instructions UPDATE et DELETE. Cette option permet de modifier ou de supprimer la ligne distribuée par la commande FETCH. Pour utiliser cette option, il faut ajouter la clause FOR UPDATE à la fin de la définition du curseur.

-- Programme PLSQL_EX9.sql --

DECLARE

 Cursor C1 is

 select ename, sal from emp

 for update of sal;

 resC1 c1%rowtype;

BEGIN

 Open C1;

 Fetch C1 into resC1;

 While C1%found Loop

 If resC1.sal > 1500 then

 update emp

 set sal = sal * 1.1

 where current of c1;

 end if;

 Fetch C1 into resC1;

 end loop;

 close C1 ;

END;

/

Explications :

(... For update of nom_colonne)

Il faut se réserver la ligne lors de la déclaration du curseur par le positionnement d'un verrou d'intention .

(... where current of c1 ;)

[image: image4.png]SQL> emajliv

Table creee.

Procedure PL/SQL terminee avec succes.

1210 Probleme sur article(s) : ABl0 CD50
1230 Probleme sur article(s) : ABl1O
1250 Commande livree completement

1301 Commande livree completement

Table supprimee.

SQL> select * from ARTICLES;

REFART DESIGNATION * PRIXUNITHT QTESTK
ABO3 Carpettes 150 17
ABl10O Tapis de Chine 1500 2
AB22 Tapis Persans 1250,1 40
cDso Chaine HIFI 735.4 1
Z210 Lot de planchette 1500 108
¢p21 Platine laser 500 100
zz01 Lot de carpettes 500 150

7 ligne(s) selecticnnee(s}.
SQL> select * from CDE;

NOCDE ET REFART QTECDE
1301 LI 5
1250 LI ABO3 8
1210 EC AB10 3
4
0

1210 EC CD50
1230 EC AB1O 2

Il faut spécifier que l'on veut traiter la ligne courante au Fetch par la clause :

Exercice : Au préalable sous SQL*Plus ajouter une colonne BUDGET de type number à la table DEPT. Dans le programme SQL « Exo4_plsql.sql » mettre à jour cette colonne avec la somme totale des salaires des employés du département.

Résultat à obtenir :

DEPTNO
DNAME
LOC
BUDGET

10
ACCOUNTING
NEW-YORK
8750

20
RESEARCH
DALLAS
11139,8

30
SALES
CHICAGO
9400

40
OPERATION
BOSTON

50
INFORMATIQUE
NANTES

III – GESTION DES ERREURS

La section EXCEPTION permet d’affecter un traitement approprié aux erreurs survenues lors de l’exécution du programme PLSQL.

On distingue 2 types d’erreur (ou d’exceptions)

· Les erreurs internes d’Oracle

· Les anomalies déterminées par l’utilisateur

Après exécution de la procédure d’erreur dans un programme d’un seul bloc, le programme PLSQL est terminée .

a) Les erreurs internes d’Oracle

Une erreur interne est produite quand un bloc PL/Sql viole une règle d'Oracle ou dépasse une limite dépendant du système d'exploitation.

Les noms d’erreurs fournis par Oracle sont regroupées dans ce tableau :

CURSOR_ALREADY_OPEN
STORAGE_ERROR

DUP_VAL_ON_INDEX
TIMEOUT_ON_RESOURCE

INVALID_CURSOR
TOO_MANY_ROWS

INVALID_NUMBER
TRANSACTION_BACKED_OUT

LOGIN_DENIED
VALUE_ERROR

NO_DATA_FOUND
ZERO_DIVIDE

NOT_LOGGED_ON
OTHERS

PROGRAM_ERROR

Exemple : Utilisation des erreurs prédéfinies

DECLARE
 wsal emp.sal%type;

BEGIN
 select sal into wsal
 from emp;

EXCEPTION
 WHEN TOO_MANY_ROWS then ... ;
 -- gérer erreur trop de lignes
 WHEN NO_DATA_FOUND then ... ;
 -- gérer erreur pas de ligne
 WHEN OTHERS then ... ;
 -- gérer toutes les autres erreurs
END ;

b) Les erreurs utilisateurs (externes)

PL/Sql permet à l'utilisateur de définir ses propres exceptions.

La gestion des anomalies utilisateur peut se faire dans un bloc PL/Sql en effectuant les opérations suivantes :

1. Nommer l'erreur (type exception) dans la partie Declare du bloc.

 DECLARE

 Nom_ano Exception;

2. Déterminer l'erreur et passer la main au traitement approprié par la commande Raise.

 BEGIN

 If (condition_anomalie) then raise Nom_ano ;

3. Effectuer le traitement défini dans la partie EXCEPTION du Bloc.

 EXCEPTION

 WHEN (Nom_ano) then (traitement);

Syntaxe :

 DECLARE
 ...
 Nom_ano EXCEPTION;
 BEGIN ...
 instructions ;
 IF (condition_anomalie)
 THEN RAISE Nom_ano
 ...
 EXCEPTION
 WHEN Nom_ano THEN (traitement);

 END ;

On sort du bloc après l'exécution du traitement d'erreur.

Exemple :

DECLARE

 Erreur_comm exception ;

 Res_pilot pilote%rowtype ;

BEGIN

 Select * into Res_pilot From Pilote

 Where nopilot = ‘7100’ ;

 If res_pilot.comm > res.pilot.sal Then

 Raise erreur_comm ;

EXECPTION

 When erreur_comm then

 Insert into erreur values(res_pilot.nom, ‘ Commission > salaire’) ;

 When NO_DATA_FOUND Then

 Insert into erreur values(res_pilot.nopilot, ‘ non trouvé’) ;

END ;

c) Visualiser les erreurs non prévues

Le développeur peut utiliser les fonctions propres à PL.SQL Sqlcode et Sqlerrm pour coder les erreurs Oracle en Exception.

Sqlcode : est une fonction propre à PL/Sql qui retourne une valeur numérique : le numéro (généralement négatif) de l'erreur courante.

Sqlerrm : renvoit le libellé de l'erreur courante ou

reçoit en entrée le numéro de l'erreur et renvoie en sortie le message, correspondant au code de l'erreur si spécifié, codé sur 196 octets.

Exemple : Utilisation des erreurs prédéfinies et nommées

Create table resultat(number, char(50)
/
DECLARE
 wsal emp.sal%type;
 sal_zero Exception;
 code number;
 lg number;
 mess char(50);

BEGIN
 select sal into wsal from emp;
 if wsal=0 then
 raise sal_zero
 end if;

EXCEPTION
 WHEN sal_zero then
 -- gérer erreur salaire
 WHEN TOO_MANY_ROWS then ... ;
 -- gérer erreur trop de lignes
 WHEN NO_DATA_FOUND then ... ;
 -- gérer erreur pas de ligne
 WHEN OTHERS then ... ;
 -- gérer toutes les autres erreurs
 code := sqlcode;
 mess := sqlerrm ;
 lg := length(mess);
 insert into resultat values (code,lg,mess);
 commit;
END ;

IV– EXERCICE DE SYNTHESE

Ecrire le programme PL/SQL qui permette de saisir une nouvelle affectation.

Les données à saisir sont :

· Ville de départ

· Ville d’arrivée

· Numéro d’avion

· Numéro de pilote

· Date de vol

Avant l’ajout de la nouvelle affectation, les contrôles suivants sont à effectuer :

· Un pilote ne peut être affecté à un vol ayant une date de vol antérieure à sa date d’embauche.

· L’avion affecté au vol doit être disponible sur l’aéroport de départ depuis au moins 6 heures .

Remarque : On suppose qu’il n’existe qu’un seul vol entre la ville de départ et la ville d’arrivée.

Vous devez créer une table erreur et une table résultat .

Vous trouverez sur la page suivante : 2 tests possibles. A vous de prévoir d’autres tests afin de passer en revue l’ensemble des possibilités d’anomalies : date embauche > Date vol etc ...
Test N° 1

SQL> @ ../gautier/exo5_plsql

"Donner la ville de départ"

PARIS
"Donner la ville d'arrivée"

ST MARTIN
"Donner le numéro d'avion"

8467
"Donner le numéro de pilote"
3452
"Donner la date du vol"

11/03/96
Table créée.

(Création d’une table erreur

Table créée.

(Création d’une table résultat

Procédure PL/SQL terminée avec succès.

aucune ligne sélectionnée

(Rien dans la table erreur

Table supprimée.

MSG2

(Contenu table résultat

OK - la date embauche est antérieure à date vol

le vol IW433 a été trouvé

OK : avion non arrivé ce jour là

le tuple est ajouté dans affect

Table supprimée.

Test N° 2

SQL> @ ../gautier/exo5_plsql

"Donner la ville de départ"

PARIS
"Donner la ville d'arrivée"

ST MARTIN
"Donner le numéro d'avion"

8467
"Donner le numéro de pilote"
3452
"Donner la date du vol"

20/12/94
Table créée.

(Création d’une table erreur

Table créée.

(Création d’une table résultat

Procédure PL/SQL terminée avec succès.

MSG1

(Table erreur

Le délai est trop court pour avion

Table supprimée.

MSG2

(table résultat

OK - la date embauche est antérieure à date vol

le vol IW433 a été trouvé

heure arrivée avion 12 heures

Table supprimée.

Quelques indications à dire oralement :

(Comment tester pas de tuple trouvé en ayant à l’affichage si le problème est dans la table pilote ou dans la table vol ?

· 2 blocs imbriqués = 2 zones exceptions différentes

DECLARE

..

BEGIN

 Select From pilote

 BEGIN

 Select from vol

 EXCEPTION

 When NO_DATA_FOUND then

 Insert into erreur

 Values (‘tuple vol non trouvé’) ;

 END ;

EXCEPTION

When NO_DATA_FOUND then

 Insert into erreur

 Values (‘tuple pilote non trouvé’) ;

END ;

(On a une phase compilation avant la phase exécution.

Si on saisit un pilote inexistant ex : nopilot = 9999, il nous jette dès la compilation : problème de contrainte d’intégrité référentielle sur le Insert into affect Values ...

(Ecrire define au lieu de accept pour la phase de test.

PARTIE 2 - LE LANGAGE PROCEDURAL D’ORACLE :
LE LANGAGE PL/SQL

I – LES CURSEURS EN PL/SQL

1. La déclaration d'un curseur

2. L'ouverture du curseur

3. Traitement des lignes

4. La fermeture du curseur

5. Complément : Utiliser une variable de type enregistrement

6. Exercices d’application

II – MODIFICATION DE DONNEES

III – GESTION DES ERREURS

a) Les erreurs internes d’Oracle

b) Les erreurs utilisateurs (externes)

c) Visualiser les erreurs non prévues

IV– EXERCICE DE SYNTHESE

Bibliographie :

Oracle 7 – Editions Laser – Roger CHAPUIS

Oracle 7 – Langages – Architecture – Administration – Eyrolles – ABDELLATIF, LIMANE et ZEROUAL

Oracle (version 7) _ Editions ENI – Manuel pratique – MEGA +

Le langage PL/SQL – Stage MAFPEN – Christian FISCHER

CORRECTION DES EXERCICES

-- Programme EXO4_PLSQL.sql --

DECLARE

 Cursor C1 is

 select * from dept

 for update of budget;

 resC1 c1%rowtype;

 tot dept.budget%type;

BEGIN

 Open C1;

 Fetch C1 into resC1;

 While C1%found Loop

 Select sum(sal) into tot from emp

 where deptno = resC1.deptno;

 update dept

 set budget = tot

 where current of c1;

 Fetch C1 into resC1;

 end loop;

 CLOSE C1;

END;

/

select * from dept

/

SQL> @ ../gautier/exo4_plsql

Procédure PL/SQL terminée avec succès.

 DEPTNO DNAME LOC BUDGET

 --------- -------------- ------------- ---------

 10 ACCOUNTING NEW YORK 8750

 20 RESEARCH DALLAS 11139,8

 30 SALES CHICAGO 9400

 40 OPERATIONS BOSTON

 50 INFORMATIQUE NANTES

Exercice de synthèse

Prompt "Donner la ville de départ"

Accept wvildep

Prompt "Donner la ville d'arrivée"

Accept wvilar

Prompt "Donner le numéro d'avion"

Accept wnuavion

Prompt "Donner le numéro de pilote"

Accept wnupilot

Prompt "Donner la date du vol"

Accept wdate

CREATE TABLE ERREUR(msg1 CHAR(200))

/

CREATE TABLE RESULTAT (msg2 char(200))

/

-- PROGRAMME EXO5_PLSQL.sql ---

DECLARE

 err_date exception;

 err_delai exception;

 date_emb pilote.embauche%type;

 num_vol vol.novol%type;

 date_vol affect.datevol%type;

 heure_dep vol.deph%type;

 heure_arr vol.arh%type;

 mess char(50);

 Cursor c1 is

 Select arh From vol, affect

 where affect.novol = vol.novol

 and datevol ='&wdate'

 and vilar = '&wvildep'

 and nuavion = '&wnuavion';

BEGIN /* début 1 Vérifier sur pilote */
 -- Vérification pour la date du vol --

 Select embauche into date_emb from pilote

 where nopilot = '&wnupilot';

 if '&wdate' < date_emb then

 raise err_date;

 end if;

 insert into resultat

 values ('OK - la date embauche est antérieure à date vol');

 BEGIN /* début 2 sur vol */
 -- récupération du numéro de vol et de l'heure de vol

 select novol, deph into num_vol, heure_dep From vol

 where vildep = '&wvildep'

 and vilar = '&wvilar';

 mess := 'le vol ' || num_vol || ' a été trouvé';

 insert into resultat

 values (mess);

 -- Vérification pour les 6 heures de battement de l'avion --

 Open C1;

 Fetch C1 into heure_arr;

 if C1%found then

 mess := 'heure arrivée avion ' || heure_arr || ' heures';

 insert into resultat

 values (mess);

 If heure_arr + 6 >= heure_dep then

 raise err_delai;

 else

 insert into resultat

 values ('avion arrivé ce jour mais délai OK');

 end if;

 else

 insert into resultat

 values ('OK : avion non arrivé ce jour là');

 end if;

 Close C1;

 -- Tout va bien on fait l'insertion --

 Insert into affect

 values (num_vol, '&wdate','&wnupilot','&wnuavion',0);

 insert into resultat

 values ('le tuple est ajouté dans affect');

 EXCEPTION

 When NO_DATA_FOUND Then

 insert into erreur

 values ('tuple non trouvé dans la table vol');

 When ERR_DELAI Then

 insert into erreur

 values ('Le délai est trop court pour avion');

 END; /* fin de 2 */

EXCEPTION /* fin de 1 */

 When NO_DATA_FOUND Then

 insert into erreur

 values ('tuple non trouvé dans la table pilote');

 When ERR_DATE Then

 insert into erreur

 values ('Impossible date vol < date embauche');

 mess := sqlerrm;

 insert into erreur

 values (mess);

END;

/

select * from erreur

/

drop table erreur

/

select * from resultat

/

drop table resultat

/

�

�

� INCORPORER PBrush ���

Cours - Le PL SQL – Partie 2

Page 18
Geneviève Gautier

_1041852647

