

Hacheur série

Hacheur série

1 Définition et symbole

Le hacheur est un convertisseur statique continu-continu

	Symbole :
	
[image: image1.wmf]]&ÿþ�����Ä���ÿ��ÿÿÿÿ����ÿþ���Ä�����������¡�d��FH70��� �À� �À�����
ÿþ�����Ä�,�����Times�����.�������(u0u0�a�"������� �À�������"���Ä���"ÿþ����� �¾� �À�
��������@�@��(�����T�)��ension�(�����continue��*��fixe�(���t�T�)��ension�(���t�continue��*��r�glable�������p�����$���p���$���p��ÿÿÿÿÿÿ�1ÿÿ�1���b���������0ÿÿ�1���c�p��ÿÿ�1���b���1ÿÿ�b�p�����7���A���7���A�p�����O���Z���O���Z������������@�@������(�����Ou plus exactement :��*��tension toujours de���ÿÿ�������*��m�me signe, de valeur������������*��moyenne r�glable.��¡�À[�gsave
/dstR[newpath clippath pathbbox]def newpath
grestore
dstR 0 get dstR 1 get translate
dstR 2 get dstR 0 get sub 2212 2018 sub div
dstR 3 get dstR 1 get sub 2370 2402 sub div scale
0 2370 2402 sub translate
%!PS-Adobe-2.0 EPSF-1.2
%%Title: Unknown
%%Creator: FreeHand 7.0
%%CreationDate: 25/02/98 19:44
%%BoundingBox: 0 0 194 32
%%FHPathName:
%ALDOriginalFile:
%ALDBoundingBox: 0 0 194 32
%%FHPageNum:0
%%DocumentSuppliedResources: procset Altsys_header 4 0
%%ColorUsage: Color
%%DocumentProcessColors: Black
%%DocumentNeededResources: font Times-Roman
%%DocumentFonts: Times-Roman
%%DocumentNeededFonts: Times-Roman
%%EndComments
%%BeginResource: procset Altsys_header 4 0
userdict begin /AltsysDict 245 dict def end
AltsysDict begin
/bdf{bind def}bind def
/xdf{exch def}bdf
/defed{where{pop true}{false}ifelse}bdf
/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf
/d{setdash}bdf
/h{closepath}bdf
/H{}bdf
/J{setlinecap}bdf
/j{setlinejoin}bdf
/M{setmiterlimit}bdf
/n{newpath}bdf
/N{newpath}bdf
/q{gsave}bdf
/Q{grestore}bdf
/w{setlinewidth}bdf
/sepdef{
 dup where not
 {
AltsysSepDict
 }
 if
 3 1 roll exch put
}bdf
/st{settransfer}bdf
/colorimage defed /_rci xdf
/_NXLevel2 defed {
 _NXLevel2 not {
/colorimage where {
userdict eq {
/_rci false def
} if
} if
 } if
} if
/md defed{
 md type /dicttype eq {
/colorimage where {
md eq {
/_rci false def
}if
}if
/settransfer where {
md eq {
/st systemdict /settransfer get def
}if
}if
 }if
}if
/setstrokeadjust defed
{
 true setstrokeadjust
 /C{curveto}bdf
 /L{lineto}bdf
 /m{moveto}bdf
}
{
 /dr{transform .25 sub round .25 add
exch .25 sub round .25 add exch itransform}bdf
 /C{dr curveto}bdf
 /L{dr lineto}bdf
 /m{dr moveto}bdf
 /setstrokeadjust{pop}bdf
}ifelse
/rectstroke defed /xt xdf
xt {/yt save def} if
/privrectpath {
 4 -2 roll m
 dtransform round exch round exch idtransform
 2 copy 0 lt exch 0 lt xor
 {dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto}
 {exch dup 0 rlineto exch 0 exch rlineto neg 0 rlineto}
 ifelse
 closepath
}bdf
/rectclip{newpath privrectpath clip newpath}def
/rectfill{gsave newpath privrectpath fill grestore}def
/rectstroke{gsave newpath privrectpath stroke grestore}def
xt {yt restore} if
/_fonthacksave false def
/currentpacking defed
{
 /_bfh {/_fonthacksave currentpacking def false setpacking} bdf
 /_efh {_fonthacksave setpacking} bdf
}
{
 /_bfh {} bdf
 /_efh {} bdf
}ifelse
/packedarray{array astore readonly}ndf
/`
{
 false setoverprint

 /-save0- save def
 5 index concat
 pop
 storerect left bottom width height rectclip
 pop

 /MMdict_count countdictstack def
 /MMop_count count 1 sub def
 userdict begin

 /showpage {} def

 0 setgray 0 setlinecap 1 setlinewidth
 0 setlinejoin 10 setmiterlimit [] 0 setdash newpath

} bdf
/currentpacking defed{true setpacking}if
/min{2 copy gt{exch}if pop}bdf
/max{2 copy lt{exch}if pop}bdf
/xformfont { currentfont exch makefont setfont } bdf
/fhnumcolors 1
 statusdict begin
/processcolors defed
{
pop processcolors
}
{
/deviceinfo defed {
deviceinfo /Colors known {
pop deviceinfo /Colors get
} if
} if
} ifelse
 end
def
/printerRes
 gsave
 matrix defaultmatrix setmatrix
 72 72 dtransform
 abs exch abs
 max
 grestore
 def
/graycalcs
[
 {Angle Frequency}
 {GrayAngle GrayFrequency}
 {0 Width Height matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
 {0 GrayWidth GrayHeight matrix defaultmatrix idtransform
dup mul exch dup mul add sqrt 72 exch div}
] def
/calcgraysteps {
 forcemaxsteps
 {
maxsteps
 }
 {
/currenthalftone defed
{currenthalftone /dicttype eq}{false}ifelse
{
currenthalftone begin
HalftoneType 4 le
{graycalcs HalftoneType 1 sub get exec}
{
HalftoneType 5 eq
{
Default begin
{graycalcs HalftoneType 1 sub get exec}
end
}
{0 60}
ifelse
}
ifelse
end
}
{
currentscreen pop exch
}
ifelse

printerRes 300 max exch div exch
2 copy
sin mul round dup mul
3 1 roll
cos mul round dup mul
add 1 add
dup maxsteps gt {pop maxsteps} if
dup minsteps lt {pop minsteps} if
 }
 ifelse
} bdf
/nextrelease defed {
 /languagelevel defed not {
/framebuffer defed {
0 40 string framebuffer 9 1 roll 8 {pop} repeat
dup 516 eq exch 520 eq or
{
/fhnumcolors 3 def
/currentscreen {60 0 {pop pop 1}}bdf
/calcgraysteps {maxsteps} bdf
}if
}if
 }if
}if
fhnumcolors 1 ne {
 /calcgraysteps {maxsteps} bdf
} if
/currentpagedevice defed {

 currentpagedevice /PreRenderingEnhance known
 {
currentpagedevice /PreRenderingEnhance get
{
/calcgraysteps
{
forcemaxsteps
{maxsteps}
{256 maxsteps min}
ifelse
} def
} if
 } if
} if
/gradfrequency 144 def
printerRes 1000 lt {
 /gradfrequency 72 def
} if
/adjnumsteps {

 dup dtransform abs exch abs max

 printerRes div

 gradfrequency mul
 round
 5 max
 min
}bdf
/goodsep {
 spots exch get 4 get dup sepname eq exch (_vc_Registration) eq or
}bdf
/BeginGradation defed
{/bb{BeginGradation}bdf}
{/bb{}bdf}
ifelse
/EndGradation defed
{/eb{EndGradation}bdf}
{/eb{}bdf}
ifelse
/bottom -0 def
/delta -0 def
/frac -0 def
/height -0 def
/left -0 def
/numsteps1 -0 def
/radius -0 def
/right -0 def
/top -0 def
/width -0 def
/xt -0 def
/yt -0 def
/df currentflat def
/tempstr 1 string def
/clipflatness currentflat def
/inverted?
 0 currenttransfer exec .5 ge def
/tc1 [0 0 0 1] def
/tc2 [0 0 0 1] def
/storerect{/top xdf /right xdf /bottom xdf /left xdf
/width right left sub def /height top bottom sub def}bdf
/concatprocs{
 systemdict /packedarray known
 {dup type /packedarraytype eq 2 index type /packedarraytype eq or}{false}ifelse
 {
/proc2 exch cvlit def /proc1 exch cvlit def
proc1 aload pop proc2 aload pop
proc1 length proc2 length add packedarray cvx
 }
 {
/proc2 exch cvlit def /proc1 exch cvlit def
/newproc proc1 length proc2 length add array def
newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval
newproc cvx
 }ifelse
}bdf
/i{dup 0 eq
 {pop df dup}
 {dup} ifelse
 /clipflatness xdf setflat
}bdf
version cvr 38.0 le
{/setrgbcolor{
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
currenttransfer exec 3 1 roll
setrgbcolor}bdf}if
/vms {/vmsv save def} bdf
/vmr {vmsv restore} bdf
/vmrs{vmsv restore /vmsv save def}bdf
/eomode{
 {/filler /eofill load def /clipper /eoclip load def}
 {/filler /fill load def /clipper /clip load def}
 ifelse
}bdf
/normtaper{}bdf
/logtaper{9 mul 1 add log}bdf
/CD{
 /NF exch def
 {
exch dup
/FID ne 1 index/UniqueID ne and
{exch NF 3 1 roll put}
{pop pop}
ifelse
 }forall
 NF
}bdf
/MN{
 1 index length
 /Len exch def
 dup length Len add
 string dup
 Len
 4 -1 roll
 putinterval
 dup
 0
 4 -1 roll
 putinterval
}bdf
/RC{4 -1 roll /ourvec xdf 256 string cvs(|______)anchorsearch
 {1 index MN cvn/NewN exch def cvn
 findfont dup maxlength dict CD dup/FontName NewN put dup
 /Encoding ourvec put NewN exch definefont pop}{pop}ifelse}bdf
/RF{
 dup
 FontDirectory exch
 known
 {pop 3 -1 roll pop}
 {RC}
 ifelse
}bdf
/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
 {exch pop findfont 3 -1 roll pop}
 {pop dup findfont dup maxlength dict CD dup dup
 /Encoding exch /Encoding get 256 array copy 7 -1 roll
 {3 -1 roll dup 4 -2 roll put}forall put definefont}
 ifelse}bdf
/RCJ{4 -1 roll
 /ourvec xdf
 256 string cvs
 (|______) anchorsearch
 {pop
cvn
dup FDFJ
exch
1 index
eq
{
_bfh findfont _efh
dup
maxlength dict
CD
dup
/FontName
3 index
put
dup
/Encoding ourvec put
1 index
exch
definefont
pop
}
{exch pop}
ifelse
 }
 {pop}
 ifelse
}bdf
/RFJ{
 dup
 FontDirectory exch
 known
 {pop 3 -1 roll pop}
 {RCJ}
 ifelse
}bdf
/hasfont
{
 /resourcestatus where
 {
pop
/Font resourcestatus
{
pop pop true
}
{
false
}
ifelse
 }
 {
dup FontDirectory exch known
{pop true}
{
256 string
cvs
(fonts/) exch MN
status
{pop pop pop pop true}
{false}
ifelse
}
ifelse
 }
 ifelse
}bdf
/FDFJ
{
 dup
 hasfont
 not
 {
pop
/Ryumin-Light-83pv-RKSJ-H
hasfont
{
/Ryumin-Light-83pv-RKSJ-H
}
{
/Courier
}
ifelse
 }
 if
}bdf
/FFJ{
 _bfh
 dup
 256 string cvs
 (|______)exch MN
 cvn
 dup
 FontDirectory
 exch known
 {
exch
pop
findfont
3 -1 roll
pop
 }
 {
pop
FDFJ
dup findfont
dup maxlength dict
CD
dup dup
/Encoding exch
/Encoding get
256 array copy
7 -1 roll
{
3 -1 roll
dup
4 -2 roll
put
}forall
put
definefont
 }
 ifelse
 _efh
}bdf
/fps{
 currentflat
 exch
 dup 0 le{pop 1}if
 {
dup setflat 3 index stopped
{1.3 mul dup 3 index gt{pop setflat pop pop stop}if}
{exit}
ifelse
 }loop
 pop setflat pop pop
}bdf
/fp{100 currentflat fps}bdf
/clipper{clip}bdf
/W{/clipper load 100 clipflatness dup setflat fps}bdf
userdict begin /BDFontDict 29 dict def end
BDFontDict begin
/bu{}def
/bn{}def
/setTxMode{av 70 ge{pop}if pop}def
/gm{m}def
/show{pop}def
/gr{pop}def
/fnt{pop pop pop}def
/fs{pop}def
/fz{pop}def
/lin{pop pop}def
/:M {pop pop} def
/sf {pop} def
/S {pop} def
/@b {pop pop pop pop pop pop pop pop} def
/_bdsave /save load def
/_bdrestore /restore load def
/save { dup /fontsave eq {null} {_bdsave} ifelse } def
/restore { dup null eq { pop } { _bdrestore } ifelse } def
/fontsave null def
end
/MacVec 256 array def
MacVec 0 /Helvetica findfont
/Encoding get 0 128 getinterval putinterval
MacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put
/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI
/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US
MacVec 0 32 getinterval astore pop
/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
/registered/copyright/trademark/acute/dieresis/notequal/AE/Oslash
/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash
/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe
/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
/daggerdbl/periodcentered/quotesinglbase/quotedblbase
/perthousand/Acircumflex/Ecircumflex/Aacute
/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex
/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
MacVec 128 128 getinterval astore pop
/findheaderfont {
 /Helvetica findfont
} def
end %. AltsysDict
%%EndResource
%%EndProlog
%%BeginSetup
AltsysDict begin
_bfh
%%IncludeResource: font Times-Roman
MacVec 256 array copy
/f0 /|______Times-Roman dup RF findfont def
_efh
end %. AltsysDict
%%EndSetup
AltsysDict begin
/onlyk4{false}ndf
/ccmyk{dup 5 -1 roll sub 0 max exch}ndf
/cmyk2gray{
 4 -1 roll 0.3 mul 4 -1 roll 0.59 mul 4 -1 roll 0.11 mul
 add add add 1 min neg 1 add
}bdf
/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf
/maxcolor {
 max max max
} ndf
/maxspot {
 pop
} ndf
/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf
/findcmykcustomcolor{5 packedarray}ndf
/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf
/setseparationgray{setgray}ndf
/setoverprint{pop}ndf
/currentoverprint false ndf
/cmykbufs2gray{
 0 1 2 index length 1 sub
 {
4 index 1 index get 0.3 mul
4 index 2 index get 0.59 mul
4 index 3 index get 0.11 mul
4 index 4 index get
add add add cvi 255 min
255 exch sub
2 index 3 1 roll put
 }for
 4 1 roll pop pop pop
}bdf
/colorimage{
 pop pop
 [
5 -1 roll/exec cvx
6 -1 roll/exec cvx
7 -1 roll/exec cvx
8 -1 roll/exec cvx
/cmykbufs2gray cvx
]cvx
 image
}
%. version 47.1 on Linotronic of Postscript defines colorimage incorrectly (rgb model only)
version cvr 47.1 le
statusdict /product get (Lino) anchorsearch{pop pop true}{pop false}ifelse
and{userdict begin bdf end}{ndf}ifelse
fhnumcolors 1 ne {/yt save def} if
/customcolorimage{
 aload pop
 (_vc_Registration) eq
 {
pop pop pop pop separationimage
 }
 {
/ik xdf /iy xdf /im xdf /ic xdf
ic im iy ik cmyk2gray /xt xdf
currenttransfer
{dup 1.0 exch sub xt mul add}concatprocs
st
image
 }
 ifelse
}ndf
fhnumcolors 1 ne {yt restore} if
fhnumcolors 3 ne {/yt save def} if
/customcolorimage{
 aload pop
 (_vc_Registration) eq
 {
pop pop pop pop separationimage
 }
 {
/ik xdf /iy xdf /im xdf /ic xdf
1.0 dup ic ik add min sub
1.0 dup im ik add min sub
1.0 dup iy ik add min sub
/ic xdf /iy xdf /im xdf
currentcolortransfer
4 1 roll
{dup 1.0 exch sub ic mul add}concatprocs 4 1 roll
{dup 1.0 exch sub iy mul add}concatprocs 4 1 roll
{dup 1.0 exch sub im mul add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}true 3 colorimage
 }
 ifelse
}ndf
fhnumcolors 3 ne {yt restore} if
fhnumcolors 4 ne {/yt save def} if
/customcolorimage{
 aload pop
 (_vc_Registration) eq
 {
pop pop pop pop separationimage
 }
 {
/ik xdf /iy xdf /im xdf /ic xdf
currentcolortransfer
{1.0 exch sub ik mul ik sub 1 add}concatprocs 4 1 roll
{1.0 exch sub iy mul iy sub 1 add}concatprocs 4 1 roll
{1.0 exch sub im mul im sub 1 add}concatprocs 4 1 roll
{1.0 exch sub ic mul ic sub 1 add}concatprocs 4 1 roll
setcolortransfer
{/dummy xdf dummy}concatprocs{dummy}{dummy}{dummy}
true 4 colorimage
 }
 ifelse
}ndf
fhnumcolors 4 ne {yt restore} if
/separationimage{image}ndf
/spotascmyk false ndf
/newcmykcustomcolor{6 packedarray}ndf
/inkoverprint false ndf
/setinkoverprint{pop}ndf
/setspotcolor {
 spots exch get
 dup 4 get (_vc_Registration) eq
 {pop 1 exch sub setseparationgray}
 {0 5 getinterval exch setcustomcolor}
 ifelse
}ndf
/currentcolortransfer{currenttransfer dup dup dup}ndf
/setcolortransfer{st pop pop pop}ndf
/fas{}ndf
/sas{}ndf
/fhsetspreadsize{pop}ndf
/filler{fill}bdf
/F{gsave {filler}fp grestore}bdf
/f{closepath F}bdf
/S{gsave {stroke}fp grestore}bdf
/s{closepath S}bdf

 userdict /islevel2
 systemdict /languagelevel known dup
 {
pop systemdict /languagelevel get 2 ge
 } if
 put

 islevel2 not
 {
/currentcmykcolor
{
0 0 0 1 currentgray sub
} ndf
 } if

 /tc
 {
gsave
setcmykcolor currentcmykcolor
grestore
 } bind def
 /testCMYKColorThrough
 {
tc add add add 0 ne
 } bind def
 /fhiscomposite where not {
userdict /fhiscomposite
islevel2
{
gsave 1 1 1 1 setcmykcolor currentcmykcolor grestore
add add add 4 eq
}
{
1 0 0 0 testCMYKColorThrough
0 1 0 0 testCMYKColorThrough
0 0 1 0 testCMYKColorThrough
0 0 0 1 testCMYKColorThrough
and and and
} ifelse
put
 }
 { pop }
 ifelse
/bc4 [0 0 0 0] def
/_lfp4 {
 /yt xdf
 /xt xdf
 /ang xdf
 storerect
 /taperfcn xdf
 /k2 xdf /y2 xdf /m2 xdf /c2 xdf
 /k1 xdf /y1 xdf /m1 xdf /c1 xdf
 c1 c2 sub abs
 m1 m2 sub abs
 y1 y2 sub abs
 k1 k2 sub abs
 maxcolor
 calcgraysteps mul abs round
 height abs adjnumsteps
 dup 1 lt {pop 1} if
 1 sub /numsteps1 xdf
 currentflat mark
 currentflat clipflatness
 /delta top bottom sub numsteps1 1 add div def
 /right right left sub def
 /botsv top delta sub def
 {
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
taperfcn /frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
 }loop
 cleartomark setflat
}bdf
/bcs [0 0] def
/_lfs4 {
 /yt xdf
 /xt xdf
 /ang xdf
 storerect
 /taperfcn xdf
 /tint2 xdf
 /tint1 xdf
 bcs exch 1 exch put
 tint1 tint2 sub abs
 bcs 1 get maxspot
 calcgraysteps mul abs round
 height abs adjnumsteps
 dup 2 lt {pop 2} if
 1 sub /numsteps1 xdf
 currentflat mark
 currentflat clipflatness
 /delta top bottom sub numsteps1 1 add div def
 /right right left sub def
 /botsv top delta sub def
 {
{
W
xt yt translate
ang rotate
xt neg yt neg translate
dup setflat
/bottom botsv def
0 1 numsteps1
{
numsteps1 div taperfcn /frac xdf
bcs 0
1.0 tint2 tint1 sub frac mul tint1 add sub
put bcs vc
1 index setflat
{
mark {newpath left bottom right delta rectfill}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
/bottom bottom delta sub def
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
 }loop
 cleartomark setflat
}bdf
/_rfs6 {
 /tint2 xdf
 /tint1 xdf
 bcs exch 1 exch put
 /inrad xdf
 /radius xdf
 /yt xdf
 /xt xdf
 tint1 tint2 sub abs
 bcs 1 get maxspot
 calcgraysteps mul abs round
 radius inrad sub abs
 adjnumsteps
 dup 1 lt {pop 1} if
 1 sub /numsteps1 xdf
 radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
 2 div /halfstep xdf
 currentflat mark
 currentflat clipflatness
 {
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bcs 0
tint2 tint1 sub frac mul tint1 add
put bcs vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
 }loop
 cleartomark setflat
}bdf
/_rfp6 {
 /k2 xdf /y2 xdf /m2 xdf /c2 xdf
 /k1 xdf /y1 xdf /m1 xdf /c1 xdf
 /inrad xdf
 /radius xdf
 /yt xdf
 /xt xdf
 c1 c2 sub abs
 m1 m2 sub abs
 y1 y2 sub abs
 k1 k2 sub abs
 maxcolor
 calcgraysteps mul abs round
 radius inrad sub abs
 adjnumsteps
 dup 1 lt {pop 1} if
 1 sub /numsteps1 xdf
 radius inrad sub numsteps1 dup 0 eq {pop} {div} ifelse
 2 div /halfstep xdf
 currentflat mark
 currentflat clipflatness
 {
{
dup setflat
W
0 1 numsteps1
{
dup /radindex xdf
numsteps1 dup 0 eq {pop pop 0.5} {div} ifelse
/frac xdf
bc4 0 c2 c1 sub frac mul c1 add put
bc4 1 m2 m1 sub frac mul m1 add put
bc4 2 y2 y1 sub frac mul y1 add put
bc4 3 k2 k1 sub frac mul k1 add put
bc4 vc
1 index setflat
{
newpath mark
xt yt radius inrad sub 1 frac sub mul halfstep add inrad add 0 360
{ arc
radindex numsteps1 ne
inrad 0 gt or
{
xt yt
numsteps1 0 eq
{ inrad }
{
radindex 1 add numsteps1 div 1 exch sub
radius inrad sub mul halfstep add inrad add
}ifelse
dup xt add yt moveto
360 0 arcn
} if
fill
}stopped
{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
{cleartomark exit}ifelse
}loop
}for
}
gsave stopped grestore
{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
{exit}ifelse
 }loop
 cleartomark setflat
}bdf
/lfp4{_lfp4}ndf
/lfs4{_lfs4}ndf
/rfs6{_rfs6}ndf
/rfp6{_rfp6}ndf
/cvc [0 0 0 1] def
/vc{
 AltsysDict /cvc 2 index put
 aload length dup 4 eq
 {pop setcmykcolor}
 {6 eq {sethexcolor} {setspotcolor} ifelse }
 ifelse
}bdf
0 setseparationgray
/imgr {2018 2370 2212 2402 } def
/bleed 0 def
/clpr {2018 2370 2212 2402 } def
/xs 1 def
/ys 1 def
/botx 0 def
/overlap 0 def
/wdist 18 def
0 2 mul fhsetspreadsize
0 0 ne {/df 0 def /clipflatness 0 def} if
/maxsteps 256 def
/forcemaxsteps false def
/minsteps 0 def
 userdict begin /AGDOrigMtx matrix currentmatrix def end
vms
-2018 -2370 translate
/currentpacking defed{false setpacking}if
/spots[
1 0 0 0 (Process Cyan) false newcmykcustomcolor
0 1 0 0 (Process Magenta) false newcmykcustomcolor
0 0 1 0 (Process Yellow) false newcmykcustomcolor
0 0 0 1 (Process Black) false newcmykcustomcolor
]def
/textopf false def
/curtextmtx{}def
/otw .25 def
/msf{dup/curtextmtx xdf makefont setfont}bdf
/makesetfont/msf load def
/curtextheight{.707104 .707104 curtextmtx dtransform
 dup mul exch dup mul add sqrt}bdf
/ta2{
tempstr 2 index gsave exec grestore
cwidth cheight rmoveto
4 index eq{5 index 5 index rmoveto}if
2 index 2 index rmoveto
}bdf
/ta{exch systemdict/cshow known
{{/cheight xdf/cwidth xdf tempstr 0 2 index put ta2}exch cshow}
{{tempstr 0 2 index put tempstr stringwidth/cheight xdf/cwidth xdf ta2}forall}
ifelse 6{pop}repeat}bdf
/sts{/textopf currentoverprint def vc setoverprint
/ts{awidthshow}def exec textopf setoverprint}bdf
/stol{/xt currentlinewidth def
 setlinewidth vc newpath
 /ts{{false charpath stroke}ta}def exec
 xt setlinewidth}bdf

/strk{/textopf currentoverprint def vc setoverprint
 /ts{{false charpath stroke}ta}def exec
 textopf setoverprint
 }bdf
n
[] 0 d
3.863708 M
1 w
0 j
0 J
false setoverprint
0 i
false eomode
[0 0 0 1] vc
vms
2050.6246 2398.375 m
2020 2398.375 L
2020 2373.3751 L
2050.6246 2373.3751 L
2050.6246 2398.375 L
n
q
%%IncludeResource: font Times-Roman
{
f0 [8 0 0 8 0 0] makesetfont
2020 2391.975052 m
0 0 32 0 0 (T) ts
-0.559937 0 rmoveto }
true
[0 0 0 1]sts
{
f0 [8 0 0 8 0 0] makesetfont
0 0 32 0 0 (ension) ts
}
true
[0 0 0 1]sts
{
f0 [8 0 0 8 0 0] makesetfont
2020 2383.975052 m
0 0 32 0 0 (continue) ts
}
true
[0 0 0 1]sts
{
f0 [8 0 0 8 0 0] makesetfont
2020 2375.975052 m
0 0 32 0 0 (fixe) ts
}
true
[0 0 0 1]sts
Q
2162.5 2398.375 m
2132 2398.375 L
2132 2373.3751 L
2162.5 2373.3751 L
2162.5 2398.375 L
n
q
%%IncludeResource: font Times-Roman
{
f0 [8 0 0 8 0 0] makesetfont
2132 2391.975052 m
0 0 32 0 0 (T) ts
-0.559937 0 rmoveto }
true
[0 0 0 1]sts
{
f0 [8 0 0 8 0 0] makesetfont
0 0 32 0 0 (ension) ts
}
true
[0 0 0 1]sts
{
f0 [8 0 0 8 0 0] makesetfont
2132 2383.975052 m
0 0 32 0 0 (continue) ts
}
true
[0 0 0 1]sts
{
f0 [8 0 0 8 0 0] makesetfont
2132 2375.975052 m
0 0 32 0 0 (r\216glable) ts
}
true
[0 0 0 1]sts
Q
2051.5 2385.875 m
2127.5 2385.875 L
[0 0 0 1] vc
false setoverprint
S
n
2064.75 2400.75 m
2114.25 2400.75 L
2114.25 2371 L
2064.75 2371 L
2064.75 2400.75 L
[0 0 0 0] vc
f
[0 0 0 1] vc
S
n
2064.8583 2371.2667 m
2114 2400.625 L
S
n
2070.5 2393.75 m
2081.25 2393.75 L
S
n
2094.75 2378.25 m
2105.5 2378.25 L
S
n
2209.9251 2396.9495 m
2164.9251 2396.9495 L
2164.9251 2375.9496 L
2209.9251 2375.9496 L
2209.9251 2396.9495 L
n
q
%%IncludeResource: font Times-Roman
{
f0 [5 0 0 5 0 0] makesetfont
2164.925079 2392.949585 m
0 0 32 0.021973 0 (Ou plus exactement :) ts
}
true
[0 0 0 1]sts
{
f0 [5 0 0 5 0 0] makesetfont
2164.925079 2387.949585 m
0 0 32 0.021973 0 (tension toujours de) ts
}
true
[0 0 0 1]sts
{
f0 [5 0 0 5 0 0] makesetfont
2164.925079 2382.949585 m
-0.018372 0 32 0.003616 0 (m\220me signe, de valeur) ts
}
true
[0 0 0 1]sts
{
f0 [5 0 0 5 0 0] makesetfont
2164.925079 2377.949585 m
0 0 32 0.021973 0 (moyenne r\216glable.) ts
}
true
[0 0 0 1]sts
Q
vmr
vmr
end
%%Trailer
%%DocumentNeededResources: font Times-Roman
%%DocumentFonts: Times-Roman
%%DocumentNeededFonts: Times-Roman
� �¿� �À�ÿ

2 Principe du hacheur série

	Montage de principe : débit sur une charge résistive

(en réalité l’interrupteur est remplacé par un transistor)
[image: image2.wmf]
On choisit une période T et une fraction  de cette période.

 s’appelle le rapport cyclique,

, sans dimension.

• de 0 à T : K est fermé
(

• de T à T : K est ouvert
(

	[image: image3.wmf]

	Commentaires :

· La tension de sortie du hacheur (tension v) n’est pas continue mais toujours positive. Lorsque la période est assez faible (fréquence de 100 à 1000 Hz) la charge ne « voit » pas les créneaux mais la valeur moyenne de la tension.

· le rapport cyclique  peut être réglé. Par conséquent la valeur moyenne

 (ou

) de v va varier.

· il s’agit d’un hacheur série car l’interrupteur K est monté en série entre la source et la charge.
	[image: image4.wmf]

Le transistor bipolaire en commutation

Le transistor est le composant de base du hacheur. C’est lui qui va faire office d’interrupteur. Voici un bref aperçu de son fonctionnement.

2.1 Caractéristique du transistor associé à une charge résistive.

	[image: image5.wmf]
b : base, c : collecteur, e : émetteur

La flèche sur le collecteur indique le sens du courant collecteur-émetteur. Le courant de base est la commande. Le circuit collecteur-émetteur est le circuit de puissance.

Un faible courant de base commande un fort courant collecteur.

.
	Le transistor fonctionne comme une "vanne à courant" où ib est la commande de la vanne qui laisse passer plus ou moins le courant ic de c vers e.

Si ib = 0, la vanne est fermée.

Si ib > ibsat, la vanne est totalement ouverte et laisse passer le courant ic maximum.

(ibsat dépend du transistor et du montage)

Entre les deux valeurs extrêmes, ib contrôle le débit de ic.

2.2 Mode de fonctionnement en commutation

•

Aucun courant ne traverse la charge R.

Le transistor est bloqué.
Il est équivalent à un interrupteur ouvert
[image: image6.wmf]
•

[image: image7.wmf]

Le courant maximum traverse le transistor

[image: image8.wmf]

Le transistor est saturé.
Il est équivalent à un interrupteur fermé.

[image: image9.png]

Conclusion :
	Dans ce mode de fonctionnement, le transistor est équivalent à un interrupteur unidirectionnel commandé à l’ouverture et à la fermeture.

C’est le fonctionnement utilisé pour le hacheur.
	symbole

[image: image10.wmf]

Valeur moyenne de la tension en sortie du hacheur

Exprimons la valeur moyenne de u en fonction du rapport cyclique .

Pour cela nous calculons sa valeur moyenne sur une période :

Valeur moyenne :

3 Débit sur une charge inductive

Propriété des inductances

	Equation fondamentale :
	[image: image11.wmf]
	

	De cette équation nous pouvons démontrer les propriétés ci-dessous.

	En régime continu établi :

	l’inductance se comporte comme un court-circuit.

	En régime périodique établi :

	la tension moyenne est nulle :
[image: image12.wmf]

	En régime quelconque :

	d’une façon générale:

• le courant dans une inductance ne peut pas subir de discontinuité.
• l’inductance s’oppose aux variations du courant qui la traverse, et ce d’autant plus que :

- L est grand ;

- la tension aux bornes de l’inductance est plus faible.

	Conclusion :
Une inductance lisse le courant.
	courant pour une charge résistive :

[image: image13.wmf]
	courant pour une charge inductive :

[image: image14.wmf]

3.1 Problème lié aux charges inductives

	A la fermeture de K le courant s’établit.

A l’ouverture de K deux phénomènes contradictoires ont lieu :

• la commande qui veut annuler subitement le courant
[image: image15.wmf]
• la bobine qui ne peut subir de discontinuité de courant
[image: image16.wmf]
Résultat du conflit :
c’est la bobine qui « gagne » en provoquant un arc électrique aux bornes de l’interrupteur pour maintenir le courant.
	[image: image17.wmf]

Conséquence :
L’interrupteur qui est en réalité un transistor subit alors à chaque blocage une surtension qui peut être destructrice. Il faut prévoir un système qui permette le blocage normal du transistor.

3.2 Solution et analyse du fonctionnement

	Montage :
	[image: image18.wmf]

	Analyse du fonctionnement :

•
de 0 à T : K est fermé.

La source U alimente la charge.

Le courant ne peut pas passer par la diode.

 (

 et

Le courant augmente progres-sivement (la pente dépend de la valeur de L).

•
de T à T : K est ouvert.

La bobine maintient le courant à travers la diode.

 (

 et

Comme la charge n’est pas alimentée, le courant diminue progressivement.
	Montage équivalent

[image: image19.wmf]
Montage équivalent

[image: image20.wmf]
	
[image: image21.png]ferme ouvert fe ouvert
T+aT

v (V)

Commentaires :

· A l’ouverture de K, il n’y aura pas d’étincelle puisque le courant imposé par la bobine pourra passer par la diode.

· D est appelé diode de roue libre car elle est active lorsque la charge n’est pas alimentée. Elle est nécessaire pour un bon fonctionnement du montage.

· La bobine lisse le courant. Plus L est grand, plus (i sera petit (voir les oscillogrammes).

	Montage réel :

	[image: image22.wmf]
	L’interrupteur est remplacé par un transistor.

Le courant ib commande la saturation (fermeture) ou le blocage (ouverture) du transistor.

3.3 Ondulation du courant dans la charge

Elle est donnée par la relation :
[image: image23.wmf]
Elle peut être mesurée à l’oscilloscope en visualisant la tension aux bornes d’une résistance.

Pour diminuer (i, il faut augmenter l’inductance L ou/et la fréquence ƒ.

3.4 Courant moyen dans la charge

Si on peut négliger la résistance de la charge on peut écrire :

Intensité moyenne dans le transistor :

Intensité moyenne dans la diode :

Remarque :
toute l’étude du paragraphe 5 a été faite en supposant la résistance R de la charge négligeable.

4 Application au moteur

Le hacheur série est souvent employé pour commander un moteur à courant continu.

On rappelle que la vitesse d’un tel moteur est proportionnel à la tension d’alimentation.

	Montage :
	[image: image24.wmf]
	Commentaire :
Pour un bon fonctionnement du moteur, il est préférable que le courant soit le plus régulier possible, d’où la présence d’une bobine de lissage. Si son inductance est suffisamment grande, on pourra considérer le courant comme constant (

).

Loi des mailles :

On passe aux valeurs moyennes :

Et comme pour un signal périodique :

Nous obtenons pour le moteur :

	Finalement la f.é.m. du moteur et donc la vitesse peuvent être régler grâce au rapport cyclique par la relation :
	

On définit la vitesse maximum pour  = 1 :



(on néglige les résistances de l’induit et de la bobine)

Pour une valeur de  quelconque :

D’où la vitesse en fonction de  :

Dans tous les résultats de ce paragraphe 6, nous avons négligé les résistances de l’induit et de la bobine.

	Remarque

Le modèle électrique complet du moteur et de la bobine de lissage est représenté ci-contre.

[image: image25.wmf]
En passant aux valeurs moyennes : (
[image: image26.wmf])

[image: image27.wmf]
avec
[image: image28.wmf]
	[image: image29.wmf]

5 Commande du transistor

Pour alimenter la base du transistor, il faut réaliser un montage électronique délivrant un signal en créneaux avec un rapport cyclique réglable. Il s’agit d’un oscillateur.

Il existe plusieurs circuits intégrés réalisant cette fonction.

1/3/98 © Claude Divoux, 1999

6/6

_950038727.unknown

_950100678.unknown

_1033818919.unknown

_1033919656.unknown

_1033924318.doc
[image: image1.png]ferme ouvert fe ouvert
T+aT

v (V)

_1034363158.unknown

_1033818943.doc
[image: image1.png]

_974294565.unknown

_974295238.unknown

_1033818836.unknown

_974294981.unknown

_974295037.unknown

_950101034.unknown

_950101371.unknown

_950100987.unknown

_950098358.unknown

_950100421.unknown

_950100613.unknown

_950098359.unknown

_950098549.unknown

_950041437.unknown

_950098357.unknown

_950098355.unknown

_950038767.unknown

_949946934.unknown

_950036982.unknown

_950037529.unknown

_950037610.unknown

_950037710.unknown

_950037015.unknown

_949948640.unknown

_950017488.unknown

_950036738.unknown

_949947320.unknown

_949948600.unknown

_949947207.unknown

_949945709.unknown

_949945767.unknown

_949946901.unknown

_949945731.unknown

_949945535.unknown

_949945563.unknown

_949945503.unknown

_949945459.unknown

