Subtask 6.2 - Uest
Lift (cm H2O) ...... Adjust pH to 7.2 with 30% NaOH and dilute to 1 L. ..... Dissolve
3.5 grams Sodium thiosulfate pentahydrate (Na2S2O3.5 H2O) in ammonia ......
Pipets, sterile, T.D. bacteriological or Mohr, glass or plastic, of appropriate
volume ...
part of the document
EUROPEAN COMMISSION
EURO-MEDITERRANEAN PARTNERSHIP
Development of Tools and Guidelines for the Promotion of the Sustainable Urban Wastewater Treatment and Reuse in the Agricultural Production in the Mediterranean Countries
(MEDAWARE)
TASK6: Development of a Methodology and a Database for the Control and Monitoring of the Urban Wastewater Treatment Plants
Subtask 6.2: Development of guidelines for sampling and analyses
October 2005
Prepared by:
Ch. Sofokleous, A. Papadopoulos, D. Fatta and M. LoizidouTable of Contents
TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc124710931" 1. Sampling PAGEREF _Toc124710931 \h 3
HYPERLINK \l "_Toc124710932" 1.1 Types of samples PAGEREF _Toc124710932 \h 3
HYPERLINK \l "_Toc124710933" 1.1.1 Grab Samples PAGEREF _Toc124710933 \h 3
HYPERLINK \l "_Toc124710934" 1.1.2 Integrated, Discharge-Weighted Samples PAGEREF _Toc124710934 \h 4
HYPERLINK \l "_Toc124710935" 1.1.3 Composite Samples PAGEREF _Toc124710935 \h 4
HYPERLINK \l "_Toc124710936" 1.2 Sampling Methods PAGEREF _Toc124710936 \h 4
HYPERLINK \l "_Toc124710937" 1.2.1 Manual sampling PAGEREF _Toc124710937 \h 4
HYPERLINK \l "_Toc124710938" 1.2.2 Automated sampling PAGEREF _Toc124710938 \h 5
HYPERLINK \l "_Toc124710939" 1.3 Type and capacity of Samplers PAGEREF _Toc124710939 \h 9
HYPERLINK \l "_Toc124710940" 1.4 Sampling Frequency PAGEREF _Toc124710940 \h 10
HYPERLINK \l "_Toc124710941" 1.5 Sample preservation PAGEREF _Toc124710941 \h 12
HYPERLINK \l "_Toc124710942" 1.6 Demands in Personnel PAGEREF _Toc124710942 \h 14
HYPERLINK \l "_Toc124710943" 2. Chemical measurements and analyses PAGEREF _Toc124710943 \h 15
HYPERLINK \l "_Toc124710944" 2.1 Parameters usually monitored in wastewater PAGEREF _Toc124710944 \h 15
HYPERLINK \l "_Toc124710945" 2.1.1 Flow volume PAGEREF _Toc124710945 \h 15
HYPERLINK \l "_Toc124710946" 2.1.2 Temperature PAGEREF _Toc124710946 \h 15
HYPERLINK \l "_Toc124710947" 2.1.3 pH PAGEREF _Toc124710947 \h 15
HYPERLINK \l "_Toc124710948" 2.1.4 Suspended Solids PAGEREF _Toc124710948 \h 16
HYPERLINK \l "_Toc124710949" 2.1.5 BOD5 PAGEREF _Toc124710949 \h 16
HYPERLINK \l "_Toc124710950" 2.1.6 Fats, Oils and Greases PAGEREF _Toc124710950 \h 16
HYPERLINK \l "_Toc124710951" 2.1.7 Nitrogen PAGEREF _Toc124710951 \h 16
HYPERLINK \l "_Toc124710952" 2.1.8 Total Phosphorus PAGEREF _Toc124710952 \h 17
HYPERLINK \l "_Toc124710953" 2.1.9 Cations and Anions PAGEREF _Toc124710953 \h 17
HYPERLINK \l "_Toc124710954" 2.1.10 Microorganisms PAGEREF _Toc124710954 \h 17
HYPERLINK \l "_Toc124710955" 2.1.11 Heavy Metals PAGEREF _Toc124710955 \h 17
HYPERLINK \l "_Toc124710956" 2.1.12 Persistent Organic Pollutants PAGEREF _Toc124710956 \h 18
HYPERLINK \l "_Toc124710957" 2.2 Parameters that need to be determined PAGEREF _Toc124710957 \h 18
HYPERLINK \l "_Toc124710958" 2.2.1 Influent PAGEREF _Toc124710958 \h 18
HYPERLINK \l "_Toc124710959" 2.2.2 Effluent PAGEREF _Toc124710959 \h 18
HYPERLINK \l "_Toc124710960" 2.2.3 Receiving Environment Characterization PAGEREF _Toc124710960 \h 20
HYPERLINK \l "_Toc124710961" 2.3 Guidelines for the execution of the measurements and analyses PAGEREF _Toc124710961 \h 22
HYPERLINK \l "_Toc124710962" 2.3.1 Flow PAGEREF _Toc124710962 \h 22
HYPERLINK \l "_Toc124710963" 2.3.2 Temperature [8] PAGEREF _Toc124710963 \h 23
HYPERLINK \l "_Toc124710964" 2.3.3 pH PAGEREF _Toc124710964 \h 24
HYPERLINK \l "_Toc124710965" 2.3.4 BOD5 PAGEREF _Toc124710965 \h 25
HYPERLINK \l "_Toc124710966" 2.3.5 Nitrogen PAGEREF _Toc124710966 \h 35
HYPERLINK \l "_Toc124710967" 2.3.6 Chlorides PAGEREF _Toc124710967 \h 41
HYPERLINK \l "_Toc124710968" 2.3.7 Sulfates PAGEREF _Toc124710968 \h 42
HYPERLINK \l "_Toc124710969" 2.3.8 Phosphorus PAGEREF _Toc124710969 \h 43
HYPERLINK \l "_Toc124710970" 2.3.9 Suspended Solids PAGEREF _Toc124710970 \h 48
HYPERLINK \l "_Toc124710971" 2.3.10 Fats, Oils and Greases PAGEREF _Toc124710971 \h 49
HYPERLINK \l "_Toc124710972" 2.3.11 Metals PAGEREF _Toc124710972 \h 52
HYPERLINK \l "_Toc124710973" 2.3.12 Total Coliforms and E.coli PAGEREF _Toc124710973 \h 54
HYPERLINK \l "_Toc124710974" 2.3.13 Faecal Coliform PAGEREF _Toc124710974 \h 56
HYPERLINK \l "_Toc124710975" 2.3.14 Chlorophyll a PAGEREF _Toc124710975 \h 59
HYPERLINK \l "_Toc124710976" 2.3.15 Enterococci PAGEREF _Toc124710976 \h 62
HYPERLINK \l "_Toc124710977" 3. Development of standard protocols for the storing of data produced from the sampling and measurements PAGEREF _Toc124710977 \h 69
HYPERLINK \l "_Toc124710978" 3.1 Sampling protocol PAGEREF _Toc124710978 \h 69
HYPERLINK \l "_Toc124710979" 3.2 Measurements protocol PAGEREF _Toc124710979 \h 71
HYPERLINK \l "_Toc124710980" 4. Quality Control PAGEREF _Toc124710980 \h 74
HYPERLINK \l "_Toc124710981" References PAGEREF _Toc124710981 \h 77
1. Sampling
Collecting (and preserving) representative samples, is critical for the successful implementation of the monitoring of the urban wastewater treatment plants. The results of any measurements or analyses that may follow sampling, are as good as the sample collection and preservation. The sampling techniques, points, frequency and the preservation of samples must be according to standards so that the results of the chemical measurements and analyses are both representative and reliable.
Sampling aims at collecting a small portion of the waste in a quantity that its representative of the whole, practically transposable and efficient for the execution of its analyses.
The location, depth and frequency of sampling depend on the local conditions and the objectives of monitoring. The samples should generally be analyzed as soon as possible, preferably within a day. In case preservation is unavoidable, the samples must be kept under specific conditions.
1.1 Types of samples
1.1.1 Grab Samples
Grab samples, collected at a particular time and place, represent only the composition of the source at that time and place. If it is known that the source is constant in composition, then grab samples may represent a longer time or longer volume that the point at which it was collected. If the source is known to vary with time, grab samples collected at suitable intervals can document these variations. If the source varies in space rather than time, samples should be collected from appropriate locations.
1.1.2 Integrated, Discharge-Weighted Samples
A mixture of grab samples collected from different points simultaneously (or as nearly so as possible).
A discharge-weighted (velocity-weighted) sample of water-sediment mixture collected at one or more verticals in accordance with the technique of depth integration; the discharge of any property of the sample expressible as a concentration can be obtained as the product of the concentration and the water discharge represented by the sample (ASTM, 1990). For a discharge-weighted sample, the water-sediment mixture is collected isokinetically so that the contribution from each point is proportional to the stream velocity at the point (that is, the sample contains an equal volume from each unit of discharge sampled).
1.1.3 Composite Samples
Composite sampling consists of a collection of numerous individual discrete samples taken at regular intervals over a period of time, usually 24 hours. The analysis of this quantity of waste, collected over a period of time, represents the average composition during the collection period.
1.2 Sampling Methods
Sampling can be executed either manually or by using automatic samplers. However, in both cases, the training and the experience of the personnel are essential for successful sampling. (APHA-AWWA-WF, 1998, PA, 1982(B)). The method selected must be appropriate for program goals and technically feasible.
1.2.1 Manual sampling
Manual sampling requires clearly less equipment that automated. Furthermore, it costs less that automated sampling and it can be implemented under several conditions, even unusual. The manual sampling equipment does not need maintenance and if necessary, extra samples can be collected in short time. However, with manual sampling there is a possibility of increased variation as a result of inappropriate handling. Other cons of manual sampling are inconsequence in collection of samples, high labor cost and unvaried work for personnel.
1.2.2 Automated sampling
Automated sampling is especially effective in terms of cost, variability, and reliability. It is more appropriate than manual in situations where:
highly variable water quality occurs on a hourly-daily time frame
infrequent transient events occur and affect water quality
it is not possible to sample manually or difficult to maintain the required sampling frequency.
However, automated sampling requires regular cleaning and maintenance of the samplers, while they are liable to obstruct in presence of solids. Furthermore, automated samplers have limits in capacity based on their specifications and they are inflexible.
In general, automated samplers are considered to be more effective than manual samplers. For the selection of an automated sampler, the following criteria must be taken into consideration:
The variability of the waste characteristics depended upon time.
The variability of the flow rate.
The specific weight of the waste and the suspended solids load.
The presence of any floating materials.
In the following table (Table 1.1) several types of automated samplers are presented, along with their characteristics.
Table 1.1: Automated samplers and their characteristics. (EPA, 1982)
Manufacturerodel no.Aprox
Cost ($)Dimensions
WD x Depth x HT
Or DIA x HT
(cms)Weight (kg)Sample bottlesType coolingMaterials Exposed to SamplesVelocity Sample Line (cm/sec)Max.Lift (cm H2O)Intake ID (mm)TypePurge CycleControlsPowerPortable or fixedNoCap (ml)BottlesTubingOtherFlow prop.Time prop.Solid stateACBatt.PressSpring141-4 67027.3 x 25.4 x VAR.18.1617570NalgeneTygonFiberglass762Dipper§§F2EVS-3 67230.5 x 22.9 x 48.38.7213785PolypropyleneTygonPlexiglas10.21823.16Vacuum§§§¡3DC-F 29630.5 x 24 x 48.38.7217570PolypropyleneTygonTeflon23.22133.16Piston§§¡4DU-2 37330.5 x 22.9 x 48.38.7217570PolypropyleneTygonTeflon23.22133.16Piston§§P5¡ 373SmallL13785PolypropyleneTygonTeflon23.22133.16Piston§§P6¡¡-100 70031.8 x 25.4x463519463PlasticTygonPVC60963.16Pressure§§P7¡¡R-100 90043.2 x 49.5 x 45.115678Ref.PlasticTygonPVC6096Pressure§§§P8S-400 270061 x 61 x 12279.5118,925Ref.PolyethylenePlasticPVC97512.7Submersible§§§F9S-600 290061 x 61 x 12279.5118,925Ref.PolyethylenePlasticPVC50.8Submersible§§§F10-4¤ 9417.6 x 30.43.213785PolypropyleneStainlessPlunger into Pipeline§§§F11SR-10 224527.2x59.7x10845.418000Ref.PolyethylenePVCU671Vacuum§§§§F1240-2R 134350.8 x 61 x 122100118,925Ref.PolyethylenePolyethylenePolypropylene6109.5Moyno§§F13200 C 23920x839.11UIceUPlasticAluminum779.5Solenoid Plunger§§§F14FS-4 1100108 x 46 x 5531.8123785PlasticNorylL883Peristaltic§§¡15Custom designRef§§§§F16Tru-Test285049.6 x 60.4 x 131147.617500Ref.Polyethylene93.345750.8Centrifugal§§§F177578 60040.6 x 23.5 x 57.212.719463PolyethyleneTygonSilicone9144.8Peristaltic§§P18F¡ 37010.2 x 743.21UUPlasticStainless9.5Pressure§§§P19S 198091.4x33.4x91.490.8118.925PolyethyleneTygonBronze7545712.7Impeller§§§F201392 120049.5 x 53.318.228500IcePolyethyleneTygonSilicone96.37906.35Peristaltic§§§§§P211480 80048.5 x 64.814.1111,350IcePolyethyleneTygonSilicone24.17906.35Peristaltic§§§§§P221580 90048.5 x 64.814.1111,350IcePolyethyleneTygonSilicone96.37906.35Peristaltic§§§§§§P23¤2 1855251URef.UPlasticPlexiglas12.7Scoop§§F24S-3000 110055.6 x 73.513.2115,000IcePolyethylene or GlassPVC or TeflonPVC or Teflon6709.5Vacuum§§§§§§P25S-4040 170048.3 x 57.217.224500 1000IcePolyethylene or GlassPVC or TeflonPVC or Teflon6709.5Vacuum§§§§§§P26S-4050 200048.3 x 57.217.224500 1000IcePolyethylene or GlassPVC or TeflonPVC or Teflon6709.5Vacuum§§§§§§P27S-5000 280061 x 61 x 14373119,000Ref.Polyethylene or GlassPVCPVC67016Vacuum§§§§§F28S-6000 320061 x 61 x 14380241000Ref.Polyethylene or GlassPVCPVC67016Vacuum§§§§§F291301 115043.2x30.5x71.127.217570PolyethyleneTygon.¡.¤9146.35Pressure§§§§¡302104¤-CLK125017570UTygon.¡.¤9146.35Pressure§§§§F31Survey275SmallL1UUTygonuna-18212.7Impeller§§P32Scout52035.6 x 15.3 x 43.21013785PolypropyleneTygonSilicone12.14576.35Peristaltic§§§P33Sentry110040.6 x 35.6 x 3315.924450GlassTygonSilicone12.14576.35Peristaltic§§§§P34Trebler16001URefUPVCLScoop§§F35Sentinel58.5 x 25.4 x 147.48417570RefPolyethylenePVC50.8U§§F36¡ 1RefVacuum§§§F378392-300 8501UUStainless305Dipper§§§F38CG-125 80033 x 25.4 x 43.29.115678¤F Resins¤F ResinsPVC9143.16Pressure§§§P39CG-150 90033 x 25.4 x 43.29.115678¤FE Resins¤F ResinsPVC9143.16Pressure§§§§P40CEL-300150033 x 48.3 x 43.213.715678ESTAT 200171200004
¤FE ResinsPVCPVC99.791412.7Submersible§§P41DEL 240S 570076.2 x 8 1.2 x 182524100Ref¤FE ResinsStainlessPVC99.791412.7Submersible§§F42CVE 57038.1x38.1x60.924.911893IceGlassTygonPlexiglas6106.35Vacuum§§§P43E100020.3 x 33 x VAR.45.41UStainlessDipper§§F44CVE II95038.1x43.2x38.115.913785IceGlassPlexiglassBrass61012.7Vacuum§§§§§P45LF 96039.4 x 7.7101UUUStainlessPlunger into pipeline§§F46WD-165034.3 x 25.4 x 36.91419462PlasticTygon9.76703.16Nutating§§§P47WD-5 110050x37x6427118,925PlasticTygon4.25486.35Finger§§§P48W- 4-24110050 x 37 x 6425.424450PlasticTygon9.76703.16NutatingXXXXP49WM-6-24140050 x 37 x 642924450PlasticTygon4.25486.35Finger
XXXXP50WA¡-2 700
34.3 x 25.4 x 36.911.419462PlasticTygon9.76703.16
Nutating§§P51W¡-5 105050 x 37 x 6419.1118,925PlasticTygon4.25486.35Finger§§P52W-1-24R152553.4 x 55.9 x 86.456.824450RefPlasticTygon9.76703.16Nutating§§§F53WAC-5R1300
53.4 x 55.9 x 12544.5118,925RefPlasticTygonVar6703.16Finger§§F54/S-VS1670-295012724473RefPolyethylenePlexiglas9.53Vacuum§§§F55/-VS1100-27781231RefStainlessPVCPVC6096Dipper§§F56/¡-VS1375 27729124RefPolyethylenePVCPlexiglasPressurised sources§§F57-VS675-136440.7 x 40.7 x 555171
2415,140
500PlasticPVCPlexiglas1406709.53Vacuum§§§§§P58W- 100039.4 x 39.4 x 6823.224473GlassTygonStainless3966.35Evacuated bottles§§P59G4 50033.8x31.4x33.513785PolyethyleneStainless53Telescoping Tube§§§P60R 3 84536.8x6614.512570GlassTygonStainless3006.35Evacuated bottles§§P61R 95038 x 38 x 4720.224570GlassTygonStainless3006.35Evacuated bottles§§§P62Custom designRefSilicone762
9.53Peristaltic§§§§F63CS/TP142520 x 20 x 710.51UUTygonSilicone346707.9Peristaltic§§§§F1.3 Type and capacity of Samplers
Samplers are usually made of glass or plastic. Special attention must be paid to the choice of the samplers material, so that it does not infect the sample. For example, some plastic materials may not be compatible with certain organic substances of the sample and if plastic sampling equipment is used, the results will be false.
Plastic containers are commonly used for sampling wastewater, although glass containers must be used if the sample will be analyzed for oils and grease, hydrocarbons, detergents and pesticides.
For the determination of the samplers type, the following factors should be taken into consideration, according to ISO 5667-10:1992:
High resistance to breakage
Good sealing efficiency
Ease of reopening
Good resistance to temperature extremes
Practicable size, shape and mass
Good potential for cleaning and reuse
Availability and cost.
Containers must be cleaned before sampling, in order to reduce the risk of contamination of the sample. Before filling, the container must be rinsed at least twice with the water being collected, except when a sample is to be analyzed for suspended sediments, for contaminants likely associated with the suspended solids or for oils and greases. In these cases, suspended particles or grease-like materials may retain on the interior surface of the container with rinsing.
1.4 Sampling Frequency
The determination of the appropriate sampling frequency is also essential for the monitoring of the wastewater, both before and after the treatment.
The sampling frequency can be determined by using techniques that require certain information. When that information is not available, the following is implemented:
Weekly investigation of collecting hourly samples.
Identification of an unusual occurrence that took place during sampling period, (e.g. storm) which could require repeating sampling.
Especially for urban waste, according to the 91/271/EEC Directive (Annex I, D), the minimum number of annual samples is determined by the capacity of the treatment plant and sampling is executed regularly.
2000 to 9999 e.p.: 12 samples during the first year, 4 samples in subsequent years, if it is proved that the water during the first years complies with the provisions of the Directive. If one sample of the fours fails, 12 samples must be taken in the following year.
10000 to 49999 e.p.: 12 samples
50000 e.p. or over: 24 samples [3=Directive]
On the following table, the suggested parameters to be monitored in order to assess the effectiveness of the different stages of the process, according to EPA, are presented.
Table 1.2: Recommended minimum sampling frequency during the urban wastewater treatment, overall and at the different stages of the treatment (EPA, 1982)
ParameterGeneralPreliminary TreatmentPrimary TreatmentActive sludgeAerationTankSecondary TreatmentChlorinationChemical Treatment
Removal of Aerobic DigestionAnaerobic Digestion ¤F¤F¤F¤FTFTFTFTF¤FFFFlowRTemperatureG1/DG1/DG1/DG3/D1/DpHG1/DG5/WG3/WG1/DG1/DG1/D G3/D1/D1/DBODC2/WC2/WC2/WC2/W1/DCODC1/WC2/WG1/WDOG3/WG5/WG1/D3/WSSC3/WC3/WC5/W1/WNH3-NC1/WC1/DC1/WTKNC1/WC1/DC1/WNO3-NC1/WC1/DC1/WP-TC1/WC3/WTurbidityRTotal Solids (TS)CG1-3/W2/W1/WTotal Volatile Solids (TVS)C2/WG2/WC3/W2/W2/WMetals C2/MTotal Coliforms G1/WEnteric ColiformsG1/W¤: Type of Sample, F: Sampling Frequency, G: Grab sample, C: Composite 24hour sample, D: day, W: week, : month, R: Continuous record1.5 Sample preservation
The analysis of the samples must be performed as soon as possible. When immediate analysis is not possible, the sample needs to be preserved, in order to remain representative of the water sampled.
Usually, wastewater is preserved with ice, cooling the sample between 0oC and 4oC. If the sample is being collected over an extended period of time, the preservation of the sample should be an integral part of the collection procedure. Keeping the samples in the dark can enhance the preservation.
There are some other, though limited, methods of preserving the samples, e.g. preservatives, like acids, alkalis, or other reagents. It is also important to determine whether the sample to be preserved should be kept in a fully filled container or not. For example, in the case of BOD5, COD, solids, sulphide, surfactants, EC, iron, magnesium, calcium, boron, alkalinity and others, the container should be filled to exclude air. In the case of acidic herbicides, oils and grease, pesticides, PCBs, PAHs, the container should not be filled completely.
On the following table, the advisable methods of sample preservation according to the parameter to be measured are presented. At the same table, the type of sampler required as well as the minimum sample volume, always according to the parameter to be monitored, are also presented.
Table 1.3: Sampling and Sample Preservation according to parameter that is to be measured, [APHA-AWWA-WF, 1998; Metcalf & Eddy, 2003]
ParameterType of SamplerMinimum
Sample Volume (ml)PreservationMaximum Storage TimeTemperatureP, G1000Immediate measurement (2)AlkalinityP, G200Refrigeration (1) 24hpHP, G50Immediate measurement (2)0.25hBODP, G1000Refrigeration6hCODP, G100Measurement in short time, addition of H2SO4 so that pH*B*UmHnHphÿuhñzzmHnHu!hñzzOJQJmHnHsH tH uhø
mHnHu jhñzzUmHnHujhñzzUmHnHuhñzzmHnHuhñzz0JmHnHujhñzz0JUmHnHu,jhñzz>*B*UmHnHphÿu¤¥¦§±²³ÍÎÏÑÒÓÔÕÖòóôõ
&'(ðåÜåÅð¸ðqðåÜåZðåI j!hñzzUmHnHu,j!hñzz>*B*UmHnHphÿu!hñzzOJQJmHnHsH tH uhø
mHnHu j hñzzUmHnHujhñzzUmHnHuhñzzmHnHuhñzz0JmHnHsH u,j hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHujhñzz0JUmHnHu(*+,-./KLMNVWXrstvwxyz{£¤¥¦ÀõæÖÅÖº±ºÖºæ~æõæÖÅÖº±ºgÖºZæhñzz0JH*mHnHu,jÿ"hñzz>*B*UmHnHphÿu j"hñzzUmHnHuhñzzmHnHu,j"hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHujhñzzUmHnHuhø
mHnHuÀÁÂÄÅÆÇÈÉåæçèö÷ø789:IJKeïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,jó$hñzz>*B*UmHnHphÿu jv$hñzzUmHnHuhñzzmHnHu,jù#hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu j|#hñzzUmHnHu efgijklmn·¸¹»¼½¾¿ÀÜÝÞßïðñïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,jç&hñzz>*B*UmHnHphÿu jj&hñzzUmHnHuhñzzmHnHu,jí%hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu jp%hñzzUmHnHu l¾lÍÞ68îD ¡FGh i ~ ùùùùùùùùùóííóóëéëëëëëëëçëå-
Æ8#
,
Æ8#
.
Æ8#
0123IJKefgijklmnª«¬ÆïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,jÛ(hñzz>*B*UmHnHphÿu j^(hñzzUmHnHuhñzzmHnHu,já'hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu jd'hñzzUmHnHu ÆÇÈÊËÌÍÎÏëìíîûüý ?`ab|ïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,jÏ*hñzz>*B*UmHnHphÿu jR*hñzzUmHnHuhñzzmHnHu,jÕ)hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu jX)hñzzUmHnHu |}~
¡¢£¤»¼½×ØÙÛÜÝÞßàüýþÿ/ïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,jÃ,hñzz>*B*UmHnHphÿu jF,hñzzUmHnHuhñzzmHnHu,jÉ+hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu jL+hñzzUmHnHu /01345678TUVWijk
ª«¬1ïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,j·.hñzz>*B*UmHnHphÿu j:.hñzzUmHnHuhñzzmHnHu,j½-hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu j@-hñzzUmHnHu 12356789:VWXYnop¯°±²ËÌÍçïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,j«0hñzz>*B*UmHnHphÿu j.0hñzzUmHnHuhñzzmHnHu,j±/hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu j4/hñzzUmHnHu çèéëìíîïð
!"#=>?ABCDEFbcdeopqïàÕàÅ´Å© ©Å©~à~màÕàÅ´Å© ©VÅ©~à~,j2hñzz>*B*UmHnHphÿu j"2hñzzUmHnHuhñzzmHnHu,j¥1hñzz>*B*UmHnHphÿuhñzzmHnHuhñzz0JmHnHu!hñzzOJQJmHnHsH tH ujhñzz0JUmHnHuhø
mHnHujhñzzUmHnHu j(1hñzzUmHnHu i "Á"%Ö&×&ì&ü(*)·+Ð+Ò/Ó/ë/ô/0¦0ª0"1öbøb>>>>>>>úîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff>>>¤>¶>À>ä>ð>ô>þ>?"?$?&?0?8?B?Z?\?^?b?f?j?l?n?p?t?úîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ffìt?v?|???¶?À?Ä?Î?Ð?ê?ö?@
@@@2@4@6@:@@B@D@F@J@úîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff¦J@L@R@Z@b@v@~@@@@@@°@²@´@¼@Î@Ð@Ô@Ø@Ú@Ü@Þ@â@ä@è@úîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfHè@ê@ð@ú@A"A,A0A>A@AZAfAtAzAAAA A¤A¨AªA®A°A²A´A¸Aúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ffö³¸AºAÀAÌAÖAîAøAþABB(B4BFBPBXBbBzB~BBBBBBBBBúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff¤ºBB B¬B´BÌBÖBÚBèBðB
CC(C2C:CDC\C`CdChCjCnCrCtCvCzCúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfRÁzC|CCCC®C¸C¼CÊCÒCìCøC
DDD&D>DBDFDJDNDRDVDXDZD^Dúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfÈ^D`DfDnDxDzDDDDDD¦DºD¼D¾DÈDÔDÖDÚDÜDÞDâDäDæDèDìDúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff®ÎìDîDôDEE&E0E4EBEJEvEE®E²EºEÂEÐEÔEØEÜEàEäEèEêEìEðEúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff\ÕðEòEøEFF*F4F:FLFTFFF¸F¼FÄFÌFÚFÞFâFæFêFîFòFôFöFúFúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff
ÜúFüFGGG4G>GDGVG^GG¦GÂGÆGÎGÖGäGèGìGðGôGøGüGþGHHúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff¸âHHHH&HBHHHLHZHdHHH H¤H¬H²HÀHÄHÈHÌHÐHÔHÖHØHÚHÞHúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfféÞHàHæHöHII"I(I2IJ@JHJRJdJfJhJlJpJrJvJzJ|JJúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfÂöJJJJ¦J¨JªJ®J¸JºJ¾JÊJÖJØJàJêJüJþJKKKKKKKKúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfpýKK K.K6KBKFKJKNKPKTK`KnKrKzKKKKKK K¤K¦K¨KªK®Kúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff®K°K¶KÂKÊKðKöKúKLL"L.L@LJLRL\LtLvLxL|L~LLLLLLúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfÌ
LLL¤L®LÐLÚLàLèLêLöLMMM&M0MHMLMNMRMTMXM\M^M`MdMúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfzdMfMlM|MMMMMMMM M¨MªM®M°M¼M¾MÂMÄMÆMÊMÌMÎMÐMÔMúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff(ÔMÖMÜMîMðMNN"N,N4NNNPNXNZN\NfNjNlNnNrNtNxNzN|N~NNúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$FfÖNNNNNNNN N¨NªN¬N®N²N´N¶NÄNÈNÊNÎNÐNÔNÖNØNÚNÞNúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff%ÞNàNæNúNOOO
OOOOO*O,O4O6ODOFOHOLONOROVOXOZO^Oúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff2,^O`OfOvO~O O¨O¬O¶O¸OÎOäOìOîOöOPPPPPP P"P&P(P,Púîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ffà2,P.P4PDPLPnPvPzPPPP²PºP¼PÄPÎPàPäPæPêPìPîPðPôPøPüPúîîââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff9üPþPQQQ@QJQNQXQ~QQQQ¦Q°Q¸QÂQÚQÜQÞQâQäQèQêQìQîQòQúîîâââââââââââââââââââââââ$dð$Ifa$$dð$Ifa$Ff