Td corrigé Dynamic coastal processes can alter bio-optical properties, which ... pdf

Dynamic coastal processes can alter bio-optical properties, which ...

C'est donc un instrument à utiliser pour mettre en débat l'acceptabilité d'une innovation ...... Paop : Projet d'appui des organisations de producteurs du café et du cacao ...... Ce même échantillon (60 exploitations) a été le sujet d'une troisième ...




part of the document



Toward Closure of Upwelling Radiance in Coastal Waters
(To be submitted to Applied Optics: v4 3/26/02)

Grace C. Chang1, Emmanuel Boss2, Curtis D. Mobley3, Tommy D. Dickey1, and W. S. Pegau4

1Ocean Physics Laboratory, University of California at Santa Barbara, 6487 Calle Real Suite A, Santa Barbara, CA 93117, U.S.A.; grace.chang@opl.ucsb.edu

2University of Maine, School of Marine Sciences, 5741 Libby Hall, Orono, ME 04469, U.S.A.

3Sequoia Scientific, Inc., Westpark Technical Center, 15317 NE 90th St., Redmond, WA 98052, U.S.A.

4College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, U.S.A.

Abstract
Upwelling radiance is an important quantity for interpretation of ocean color remote sensing data. We present three methods for deriving water-leaving radiance, Lw(lð), and remote sensing reflectance using a HyperTSRB, profiled spectroradiometers, and Hydrolight 4.1 simulations. Average agreement between HyperTSRB and spectroradiometric determinations of Lw(lð) was 26%, 13%, and 17% at blue, green, and red wavelengths, respectively. Comparisons of HyperTSRB (and spectroradiometric) Lw(lð) with Hydrolight simulations yielded percent differences of 17% (18%), 17% (18%), and 13% (20%) for blue, green, and red wavelengths. The differences in Lw(lð) could largely be accounted for were largely dependent onby uncertenties in measurements and instrument errors and model assumptions. We present techniques for converting upwelling radiance to Lw(lð).
OCIS Codes: 010.4450, 120.0280, 120.4640

1.0 Introduction

We show methods for deriving Lw(lð) and Rrs(lð) using a tethered radiometric buoy, profiled spectroradiometers, and radiative transfer model simulations with measured inherent optical properties as inputs. We aim to find closure between the two in situ measurement methods as well as with radiative transfer modeling in turbid coastal waters. Techniques for converting Lu(lð,z) to Lw(lð) are also presented.

Spectral radiance is one of the fundamental quantities of interest in the field of ocean optics (Kirk, 1989; Mobley, 1994). It is important for quantifying ocean color/remote sensing, water column visibility, and photosynthesis. Over the past few decades, algorithms and models to relate remote sensing measurements to in-water constituents have been developed (e.g., Garver et al., 1994; Tassan, 1994; Roesler and Perry, 1995; Gould and Arnone, 1998; O’Reilly et al., 1998; He et al., 2000). Ocean color remote sensing data have been used to estimate chlorophyll concentration, spectral backscattering coefficient, spectral absorption coefficient, and spectral absorption coefficient separated into phytoplankton, detrital, and gelbstoff constituents. Some of the current problems with derivation of pigment concentrations and in-water optical properties from ocean color remote sensing include the presence of clouds, atmospheric corrections (Gordon and Wang, 1994; Gordon et al., 1997; Chomko and Gordon, 1998; Hu et al., 2000), extrapolation of region-specific to global ocean color algorithms (particularly for coastal waters), and determination of the vertical structure of optical and biological characteristics (Gordon and McCluney, 1975). Recently, increasing research efforts have been focused on the use of remote sensing data to resolve vertical structures and detect subsurface features such as internal waves, sediment plumes, bottom type, and bathymetry (Gould and Arnone, 1998; Barnard et al., 2000; Frette et al., 2001; Weidemann et al., 2001; Dierssen et al., submitted manuscript).

Radiance, L(qð,fð,ðlð,ð ðz), is defined as the radiant flux at a specified point with units of W m-2 sr-1 nm-1. It is dependent on zenith angle, qð; azimuthal angle, fð; wavelength, lð;ð ðand depth, z, assuming plane-parallel geometry. The spectral shape and magnitude of radiance is dependent on the influx of solar radiation at the sea surface, sea surface characteristics, and the optical properties of the water column. Upwelling radiance, Lu(lð, z), is the radiance of an upwelling light field at qð = pð. Lu(lð, z) is used to compute the spectral radiance reflectance (units of sr-1),

the ratio of the upwelling radiance to the downwelling irradiance, Ed(lð,ðz). Irradiance is the vertical component of radiant flux per unit surface area per unit wavelength (units of W m-2 nm-1). Taken just above the sea surface, rrs(lð) is termed the remote sensing reflectance,

where Lw(lð) is water-leaving radiance and Ed(lð) is solar spectral irradiance, both quantities measured just above the sea surface (z = 0+).

Technologically advancedNovel in situ instrumentation has been developed recently for measurements of upwelling radiance and downwelling irradiance with hyperspectral capabilities (&A(A.A0A2A6AFBHB˜BšB¬B®B°B²BÆBÈBCC,C0C„C†CœDžD D¢DE
E EEJEnEHH†IˆIúNO"O&Oü÷üðüðü÷üÝÓüËüÆü¾ü÷ü÷üÆü¾üðü¶üðüðüÆü¾üÆü¾üðü¾üðü¬™‚-h{8rhÑG(OJQJcHdhdhdh™Úcf%h{8rhÑG(cHdhdhdh™ÚcfHh™ÚcfhÑG(j'*h{8rUh{8rOJQJ h{8rH*jîh{8rUHh—ÚcfhVS‹%h{8rhVS‹cHdhdhdh—Úcf h{8r6] h{8rH*h{8r3 CHEJEpE5L6LšP›PµP£S¤S‘U’UÚWÛWçWèWX1^2^p^ðcöcöhøh¾mÀmúúúúúòúúòúòúúúúúúíëúúâúúúú$„Ð`„Ða$gdC$a$gdÑG($a$&OLOPO`O›PµPQ Q¾RÈRÒRëR SS.U0U1U>UaUgUòUôUøVúVÛWçWèWXY+Y6Yì[ð[2^ìÕìÑÊÑÊÑ·­ÑšÑ·Ñ­†·ÑÑÑzÑÊÑg]ÑUÑh{8rOJQJHh¡ÚcfhC%h{8rhCcHdhdhdh¡Úcf h{8r5\ h{8rH*HhœÚcfhÑG(HhšÚcfhÑG(%h{8rhÑG(cHdhdhdhšÚcfHh›ÚcfhÑG(%h{8rhÑG(cHdhdhdh›Úcf h{8r6]h{8r-h{8rhÑG(OJQJcHdhdhdh™Úcf%h{8rhÑG(cHdhdhdh™Úcf!2^p^þ^ÿ^#_$_3_4_``D`F`R`T` bbbb,b.b0b2b(c*c,c0còcôcddd ddd®d°d²d¶dºd¼dlfôfg”g–g˜gˆhŠhŒhŽhðhòh.j0j2j4jBjFjHjJj¼kÀkÂkÄkÊkÎküklll
llônønúnün o$o&oùõðõðõëõãõðõðõëõãõëõãõëõãõÛõëõãõëõëõãõëõÑõëõãõëõãõÅõëõãõëõãõëõãõëõëõãõëõëõãõëõjhÑ70J\¥@¥D¥L¥N¥P¥R¥Â¥Ä¥Î¥Ð¥Ò¥Ô¥€¦‚¦„¦†¦F§H§J§L§Z§\§^§`§¨ ¨H¨O¨h¨t¨u¨|¨³©´©ªªnªpªrªtªˆªŠªŒªŽª’ª”ª¤ª¦ªü÷üïüèü÷üïü÷üïü÷üïüàü÷üïüÛü÷üïü÷üïü÷üïü÷üïüïü÷üïü÷üïü÷üïü÷üïüèüèüÔüèü÷üïü÷üïü÷üïüÛü÷ h{8r5\ h{8rH*jïch{8rU h{8r6]h{8rOJQJ h{8rH*h{8rTt¨u¨\¯]¯È±Ê±z·|·)Ü*Ü;ÜÝÝÝÞޒޓމߊßeàfàOáPá5â6âïâðâúúúúúúúúúúõúúúúúúúððõõëëëúúdàdàdà$a$¦ª¨ªªªÎªÐªˆ«Š«Œ«Ž«6¬8¬˜¬š¬œ¬ž¬È­Ì­°° °"°0°4°6°8°²²²².²µ¶¶H¶J¶L¶N¶^¶`¶b¶d¶ä¶æ¶è¶ê¶ø¶ú¶·
· ··2·4·6·8·ºÜ*Ü;ÜÝÝÀÝÐÝñÝõÝ‰ß à2àüôüíüèüôüãüèüôüãüèüôüèüôüèüôüíüèüôüèüôüèüôüèüôüèüôüèüôüèüôüôüèüôüèüôüáüÚüÚüíüÚüÕÎ h{8r56 h{8r5 h{8r5\U h{8rH* h{8rH* h{8r6]h{8rOJQJh{8rQore than 20 years ago (Petzold, 1972).

Acknowledgements
This work was supported by the Office of Naval Research Environmental Optics Program as part of the HyCODE program. We would also like to thank François Baratange for his help in data collection and processing.
References

Arnone, R. A., R. W. Gould, R. A. Oriol, and G. Terrie, “Effects of vertical chlorophyll structure and solar irradiance on remote sensing ocean color spectrum,” in Ocean Optics XII, S. G. Ackleson ed., Proc. SPIE 2258, 322-331 (1994).

Barantage, F., College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331 (personal communications, 2002).

Barnard, A. H., A. D. Weidemann, W. S. Pegau, J. R. V. Zaneveld, J. W. Rhea, and C. O. Davis, “Hyperspectral remote sensing imagery and the detection of subsurface features,” presented at Ocean Optics XV, Monte Carlo, Monaco, 16-20 October 2000.

Chang, G. C., Analyses of bio-optical variability related to physical processes on the southern New England continental shelf: July 1996 - June 1997, Ph.D. dissertation, (University of California, Santa Barbara, 1999).

Chang, G. C., T. D. Dickey, O. M. Schofield, A. D. Weidemann, E. Boss, W. S. Pegau, M. A. Moline, and S. M. Glenn, “Nearshore physical processes and bio-optical properties in the New York Bight,” J. Geophys. Res., (to be published).

Chomko, R. M. and H. R. Gordon, “Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption,” Appl. Opt., 37, 5560-5572 (1998).

Cullen, J. J. and M. R. Lewis, “Biological processes and optical measurements near the sea surface: Some issues relevant to remote sensing,” J. Geophys. Res. 100, 13,255-13,266 (1995).

Dierssen, H. M., Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, submitted a manuscript called, “Remote sensing of bathymetry and seagrass in the Bahamas Banks using high resolution airborne imagery” to Limnol. Oceanogr.

Emery, W. J. and R. E. Thomson, Data Analysis Methods in Physical Oceanography, (Permagon, New York, 1997).

Frette, O., S. R. Erga, J. J. Stamnes, and K. Stamnes, “Optical remote sensing of waters with vertical structure,” Appl. Opt. 40, 1478-1487 (2001).

Garver, S. A., D. A. Siegel, and B. G. Mitchell, “Variability in near-surface particulate absorption spectra: What can a satellite ocean color imager see?,” Limnol. Oceanogr. 39, 1349-1367 (1994).

Gordon, H. R., “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38, 3166-3174 (1999).

Gordon, H. R. and W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt., 14, 413-416 (1975).

Gordon, H. R. and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491-500 (1992).

Gordon, H. R. and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. II: Error in the retrieved water-leaving radiance,” Appl. Opt. 31, 4261-4267 (1992).

Gordon, H. R., T. Du, and T. M. Zhang, “Atmospheric correction of ocean color sensors: analysis of the effects of residual instrument polarization sensitivity,” Appl. Opt., 36, 6938-6948 (1997).

Gould, R. W. and R. A. Arnone, “Three-dimensional modelling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sensing 19, 2141-2159 (1998).

He, M-X., Z-S. Liu, K-P. Du, L-P. Li, R. Chen, K. L. Carder, and Z-P. Lee, “Retrieval of chlorophyll from remote-sensing reflectance in the China seas,” Appl. Opt. 39, 2467-2474 (2000).

Hooker, S. B., S. McLean, J. Sherman, M. Small, G. Lazin, G. Zibordi, and J. Brown, “The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7), March 1999,” SeaWiFS Postlaunch Technical Series, Vol. 17, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland (2002).

Hu, C., K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery: Assessment of the use of alternative bands,” Appl. Opt., 39, 3573-3581 (2000).

Kirk, J. T. O., “The upwelling light stream in natural waters,” Limnol. Oceanog. 34, 1410-1425 (1989).

Kohler, D. D. R. and W. D. Philpot, “Comparing in situ and remotely sensed measurements in optical shallow waters,” presented at Ocean Optics XV, Monte Carlo, Monaco, 16-20 October 2000.

Leathers, R. A., T. V. Downes, and C. D. Mobley, “Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments,” Opt. Exp. 8, 561-570 (2001).

Lee, M. E., Optical Oceanography Laboratory, Marine Hydrophysical Institute, National Ukrainian Academy of Science, 2 Kapitanskaya St., Sevastopol, Crimea, Ukraine, 99011, and M. R. Lewis submitted a manuscript, “Measurement of the optical volume scattering function in the upper ocean,” to J. Atmos. Oceanogr. Tech.

Mobley, C. D., Light and Water: Radiative Transfer in Natural Waters, (Academic Press, San Diego, 1994).

Mobley, C. D., “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt., 38, 7442-7455 (1999).

Mobley, C. D., B. Gentili, H. R. Gordon, Z. H. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt., 32, 7484-7504 (1993).

Mobley, C. D., L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt., 41, 1035-1050 (2002).

O’Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937-24,953 (1998).

Petzold, T. J., “Volume scattering functions for selected ocean waters,” Tech. Rept. SIO 72-78, Scripps Inst. Oceanogr., San Diego, 79 pgs. (1972).

Pope, R. M. and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997).

Prieur, L. and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671-689 (1981).

Roesler, C. S. and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279-13,294 (1995).

Tassan, S., “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369-2378 (1994).

Toole, D. A., D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39, 456-469 (2000).

Waters, K. J., “Effects of Raman scattering on the water-leaving radiance,” J. Geophys. Res. 100, 13,151-13,161 (1995).

Westberry, T. K., Phytoplankton natural fluorescence variability and primary production in the Sargasso Sea, Masters Thesis, (University of California, Santa Barbara, 2001).

Weideman, A. D., D. J. Johnson, R. J. Holyer, W. S. Pegau, L. A. Jugan, and J. C. Sandidge, "Remote imaging of internal solitons in the coastal ocean," Rem. Sens. Environ. 76, 260-267 (2001).

Zaneveld, J. R. V., J. C. Kitchen, and C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, S. G. Ackleson ed., Proc. SPIE 2258, 44-55 (1994).

Zaneveld, J. R. V., E. Boss, and A. Barnard, “Influence of surface waves on measured and modeled irradiance profiles,” Appl. Opt. 40, 1442-1449 (2001).
Figures

Figure 1. LEO-15 site map showing the measurements made during the HyCODE experiment between July 21 and 27, 2000. Depth contours are approximate.

Figure 2. HyperTSRB (solid lines) and OCP (circles) comparisons of Lu(lð,ð0.66m) at the SeaWiFS wavelengths for (a and b) July 21, 2000; 39.37°N, 74.21°W, (c and d) July 22, 2000; 39.46°N, 74.26°W, (e and f) July 24, 2000; 39.49°N, 74.23°W, and (g and h) July 27, 2000; 39.36°N, 74.13°W. Differences between the two methods, calculated by equation (5), are shown in the right-hand column.


Figure 3. Comparisons between HyperTSRB (solid lines) and OCP (circles) measured Lu(lð,ð0.66m) (left two columns) and Lw(lð) (right two columns) with Hydrolight-computed (dashed lines) upwelling radiances for (a-d) July 21, 2000; 39.37°N, 74.21°W, (e-h) July 22, 2000; 39.46°N, 74.26°W, (i-l) July 24, 2000; 39.41°N, 74.20°W, and (m and n) July 27, 2000; 39.34°N, 74.08°W. No OCP data were obtained on July 27, 2000, therefore only HyperTSRB and Hydrolight Lu(lð,ð0.66m) are compared; Hydrolight-derived Lw(lð) is plotted as the dash-dotted line. Differences between methods, calculated by equation (5), are also shown.

Figure 4. Rrs(lð), derived from HyperTSRB (solid lines) and OCP (circles) measurements and Hydrolight simulations (dashed lines) for (a and b) July 21, 2000; 39.37°N, 74.21°W, (c and d) July 22, 2000; 39.46°N, 74.26°W, (e and f) July 24, 2000; 39.41°N, 74.20°W, and (g) July 27, 2000; 39.34°N, 74.08°W. Again, no OCP data were obtained on July 27, 2000, therefore only Hydrolight Rrs(lð)ð ðis shown. Differences between the methods, calculated by equation (5), are shown in the right-hand column.

Figure 5. Rrs(lð) = Lu(lð,ð0.66m)/Ed(lð,0+m) (dashed line with crosses) compared with Rrs(lð) = Lw(lð,0+m)/Ed(lð,0+m) (solid line with symbols) for July 24, 2000; 39.41°N, 74.20°W. HyperTSRB data are shown in (a and b) and OCP data are illustrated in (c and d). Differences were computed using equation (5) and shown in the right-hand column.

Figure 6. Maximum (circles), minimum (pluses), and mean (triangles) of the conversion factor, Fg(lð), for (a) July 21, 2000, (b) July 22, 2000, (c) July 24, 2000, and (d) July 27, 2000; and (e) standard deviation and (f) variance of the conversion factor, Fg(lð), averaged over all days and locations and averaged over each sampling day. The legend for the standard deviation and variance plots is shown in (e). Tables

Table 1. Average percent differences computed using equation (5) and r2 values between HyperTSRB and OCP Lu(lð,ð0.66m).
lð412442490532555590682r2July 21d30.8825.7718.9112.2312.6410.6910.250.969July 2242.4839.5233.3024.0323.239.00025.370.967July 24a48.9246.5739.4228.9628.2216.4233.840.972July 24b30.9529.7822.789.2858.26814.8216.580.968July 24c32.9933.3929.3918.8918.104.06825.030.972July 24d23.7523.8120.1710.9910.5912.0214.380.969July 27c22.0718.7111.858.6337.17030.197.9600.929Average34.7432.3626.2016.9816.4212.9719.730.966
Table 2. Average percent differences computed using equation (5) and r2 values between HyperTSRB and OCP Lw(lð).
lð412442490532555590682r2July 21d31.79 25.9918.3311.0811.5613.1811.140.956July 2225.89 21.5714.4110.7010.2616.7112.330.955July 24a48.44 45.2336.2423.9322.4510.2632.750.948July 24b19.13 21.7519.619.5739.29213.2812.700.961July 24c39.80 37.3327.0611.429.4228.85524.800.932July 24d10.44 10.559.4036.1165.72925.704.9340.961July 27c20.98 17.268.5916.0335.66039.8815.160.876Average29.84 27.1720.5112.2911.7316.0616.670.947

Table 3. Average percent differences computed using equation (5) and r2 values between HyperTSRB and Hydrolight and OCP and Hydrolight (in parentheses) for Lu(lð,ð0.66m).
lð412442490532555590682r2July 21a22.49 19.984.69012.2118.3423.0717.310.963July 21b2.883 1.96412.4723.8529.4838.469.4430.960July 21c2.995 1.34410.2020.0925.5735.5716.860.963July 21d1.023
(30.65)2.327
(24.2àeàÚàáÔâ×âPä~äååáåãåaæcæ÷æùæiçkç-è/èñèóèŸé¦éÍéÏéˆêŠêpìrìØìÚìNîOî¯ïäïuðwðÚñÜñ¨ò«òØóÚóäôæô©õ¬õlönöm÷o÷ß÷â÷høvøVùXùçù÷ùúú¯ú±úÅúÍúÎúÏúdûeûfûªû«ûüü|þúöñöêöãöêöêöêöêöêöêöêöãöêöêöêöêöêöãöêöêöêöêöêöêöêöêöêöãöêöãöêöêöêöÛöÐêöËöÃöh{8rOJQJ h{8rH*jGûh{8r5U\j~th{8rU h{8r6] h{8r5\ h{8r\h{8r h{8r5Kðâ/ä0äœää1å2å÷åøåwæxæ ç ç}ç~çCèDèééãéäéžêŸêÛëÜë†ì‡ìîìïìªíúúúúúúúúúúúúúúúúúúúúúúúúúúúúú$a$ªí«íaîbîŸï ï ð
ð‹ðŒðpñqñðñññÃòÄòXóYóîóïóøôùôÄõÅõ‚öƒö÷‚÷ú÷û÷úúúúúúúúúúúúúúúúúúúúúúúúúúúúú$a$û÷©øªøjùkù,ú-úÅúÎúÐúdûfû|þ€þ‚þ½,"ëÿÿÿÿÿÿÿÿÿÿÿÿØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoÿÿÿÿÿÿÿÿÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laöl/8AGMSY_ekööööööööö $$Ifa$ kl ókd'Ë$$If–lÖÖÊ ëà B
Á@¿>½,"ëÿÿÿÿÿÿÿÿÿÿÿÿØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoÿÿÿÿÿÿÿÿÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laöllu~„Š–œ¢¨ööööööööö $$Ifa$ ¨© ókd¯Ì$$If–lÖÖÊ ëà B
Á@¿>½,"ëÿÿÿÿÿÿÿÿÿÿÿÿØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoÿÿÿÿÿÿÿÿÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laöl©²»ÁÇÍÓÙßåööööööööö $$Ifa$ åæ ókd7Î$$If–lÖÖÊ ëà B
Á@¿>½,"ëÿÿÿÿÿÿÿÿØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoÿÿÿÿÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laölæî÷ý !ööööööööö $$Ifa$ !" ókd¿Ï$$If–lÖÖÊ ëà B
Á@¿>½,"ëÿÿÿÿØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laöl"#$ (08@HPVúúúñññññññññ $$Ifa$$a$ VX ókd9Ñ$$If–lÖÖÊ ] ´ HÜp˜,"ñÿÿÿÿ×ÿÿÿÿ}ÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿ}ÿÿÿÿvÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laölXjx„œ¨´ÀÌööööööööö $$Ifa$ ÌÎ ókd­Ò$$If–lÖÖÊ ] ´ HÜp˜,"ñÿÿÿÿÿÿÿÿ×ÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿvÿÿÿÿÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laölÎàîú*6Bööööööööö $$Ifa$ BD ókd/Ô$$If–lÖÖÊ ] ´ HÜp˜,"ñÿÿÿÿÿÿÿÿÿÿÿÿ×ÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿvÿÿÿÿÿÿÿÿÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laölDVht€Œ˜¤°¼ööööööööö $$Ifa$ ¼¾ ókd±Õ$$If–lÖÖÊ ] ´ HÜp˜,"ñÿÿÿÿÿÿÿÿÿÿÿÿ×ÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿvÿÿÿÿÿÿÿÿÿÿÿÿÖ0ÿÿÿÿÿÿö,"6Ö$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö
laöl¾ÐÜìø|
||| |&|.|4|