Td corrigé TD de Théorie des jeux M1 - lameta pdf

TD de Théorie des jeux M1 - lameta

Corrigé : A ? ... C'est la Loi de Pareto. Avec le reste de ses clients (80 %), l' entreprise ne réalise que 16,15 % de son chiffre d'affaires. L'entreprise est vulnérable ...




part of the document



TD de Théorie des jeux M1
Thème 1 : Représentation formelle des jeux
P.J. Cottalorda, M. Heugues


Exercice 1 :

Deux pays (A et B) considèrent l’état des relations politiques entre eux. Ils doivent choisir entre un état de guerre (G) et un état de paix (P). Si les deux choisissent la guerre alors chacun aura un gain de 2 points. Si un seul déclare la guerre alors il obtient 6 points et son voisin obtient 0 point. S’ils choisissent tous les deux de préserver la paix, chacun obtient un gain de 4 points.

1- Donnez l’ensemble des joueurs et l’ensemble des stratégies de chaque joueur.
2- Représentez le jeu sous forme stratégique.
3- Représentez le jeu sous forme développée.

Exercice 2 : Papier-Ciseaux-Caillou

Il s’agit d’un jeu entre deux enfants, Marie et Paul. Les deux choisissent simultanément un objet parmi les trois suivants : papier (P), ciseaux (Ci) et caillou (Ca). Selon ces choix, soit un des enfants gagne le jeu, soit il n’y a pas de gagnant (quand ils choisissent le même objet). Caillou gagne contre ciseaux, ciseaux gagne contre papier et papier gagne contre caillou.
Le montant des gains est défini de la façon suivante : l’enfant qui gagne obtient 2 points tandis que celui qui perd obtient 0 point. En cas d’égalité, chacun des deux enfants obtient 1 point.

Décrivez l’ensemble des joueurs et l’ensemble des stratégies de chaque joueur.
Ecrivez le jeu simultané sous forme stratégique
Ecrivez le jeu simultané sous forme développée
Ecrivez le jeu simultané sous forme développée si Paul triche et observe le choix de Marie avant de jouer.
Ecrivez le jeu simultané sous forme extensive si Paul observe le choix de Marie que si elle choisit caillou.

Execrice 3 : Enchères

Une unité d’un bien est mise aux enchères. Il y a n acheteurs potentiels et l’acheteur i a une valuation (c’est-à-dire la valeur qu’il pense que le bien a) vi e" 0 pour ce bien. La procédure d enchère est la suivante : chaque acheteur soumet une offre écrite sous pli scellé. Les plis sont transmis à un commissaire priseur. L acheteur ayant soumis l offre la plus haute remporte le bien et paye un prix égal à la seconde plus haute offre. En cas de gagnants ex-aequo, on tire au sort celui qui remporte le bien.

Modéliser cette situation sous forme d’un jeu en précisant les ensembles de stratégies et les fonctions de paiement.
TD de Théorie des jeux M1
Thème 2 : Stratégies dominantes, dominance itérative, récurrence amont et stratégies prudentes

P.J. Cottalorda, M. Heugues

Exercice 1 :

On considère la matrice des gains d’un jeu simultané à deux joueurs suivante :
2R1R2R3L1(0,0)(1,2)(2,1)1L2(2,3)(4,5)(3,1)L3(1,1)(2,3)(1,2)






L1, L2 et L3 correspondent aux stratégies du joueur 1 et R1, R2 et R3 à celles du joueur 2.

Existe-il un équilibre en stratégie dominante ?
Si les paiements associés à (L3, R2) sont (4, 3), y a-t-il un équilibre en stratégie dominante ?
Si les paiements associés aux stratégies (L3, R3) deviennent (7,2) et ceux associés aux stratégies (L3, R1) sont (1, 4), y a-t-il un équilibre en stratégie dominante ? Le jeu est-il solvable par dominance itérative et dans ce cas quel est l’équilibre ?

Pour chacune des questions, vous expliquerez votre raisonnement de manière détaillée.


Exercice 2 : Enchères

On reprend l’énoncé de l’exercice 3 (thème 1). Montrez qu’offrir sa propre valuation v est une stratégie faiblement dominante.

Exercice 3 :

On considère le jeu simultané à deux joueurs suivant :

2R1R2R3L1(3,-3)(2,-2)(7,-7)1L2(-4,4)(1,-1)(9,-9)L3(1,-1)(0,0)(-3,3)






Quelle est la particularité de ce jeu ? Utilisez cette propriété pour simplifier la matrice des paiements.
Calculez les stratégies prudentes pour chacun des joueurs. 
Ce jeu a-t-il une ‘valeur’ ?

Exercice 4 :

On considère l’arbre du jeu suivant :


 SHAPE \* MERGEFORMAT 



Déterminez le(s) équilibre(s) de ce jeu en utilisant le concept de récurrence amont.
Dessinez la matrice des paiements correspondant à ce jeu (forme stratégique) et calculez l’équilibre en dominance itérative. Conclure.

TD de Théorie des jeux M1

Thème 3 : Equilibre de Nash, stratégies mixtes et stratégies corrélées.

P.J. Cottalorda, M. Heugues

Exercice 1 :

Soit le jeu sous forme stratégique suivant :
  B  gdAg(1,1)(1,1)d(-1,-1)(2,0)





Quels sont les équilibres de Nash en stratégies pures de ce jeu ?
Existe-t-il des équilibres de Nash en stratégies mixtes ?

Exercice 2 : La fureur de vivre

Deux conducteurs A et B dirigent leur voiture l’une contre l’autre dans une rue trop étroite pour qu’elles puissent se croiser sans provoquer d’accident. Si un conducteur ralentit, tandis que l’autre garde la même vitesse, le premier conducteur perd la face : il obtient alors une utilité de 0 et son adversaire obtient 4. Si les deux ralentissent en même temps alors le jeu se termine par une égalité et les deux conducteurs obtiennent une utilité de 2. Si aucun ne ralentit alors l’accident arrive et chacun obtient une utilité de -2.

Précisez l’ensemble des joueurs et l’ensemble des stratégies de chaque joueur.
Donnez la forme stratégique du jeu.
Déterminez les équilibres de Nash en stratégies pures du jeu.
Déterminez les équilibres de Nash en stratégies mixtes après avoir préciser les fonctions de meilleure réponse des joueurs.

Exercice 3 :

Considérez le jeu sous forme stratégique suivant :

  B  12AI(k, l)(e, f)II(g, h)(c, d)
Déterminer les conditions sur les paramètres c, d, e, f, g, h, k et l pour que :
le résultat (I, 1) résulte de l’élimination des stratégies strictement dominées ;
le résultat (I, 1) soit un équilibre de Nash ;
le résultat (I, 1) soit un optimum de Pareto ;
le résultat (I, 1) ne soit pas Paréto-comparable avec (II, 2).


Exercice 4 :

On considère le jeu suivant :

  2  R1R21L1(4,4)(1,5)L2(5,1)(0,0)

Calculer les équilibres de Nash du jeu en stratégies pures et en stratégies mixtes.

Que se passe-t-il si les deux joueurs décident de s’entendre pour baser leur décision sur la réalisation d’un événement aléatoire E (observable par les deux joueurs) extérieur au jeu ?
On fait l’hypothèse que cet évènement survient avec une chance sur deux et que les joueurs décident de jouer (L2, R1) si l’événement se produit et (L1, R2) sinon.

On considère maintenant 3 événements aléatoires mutuellement exclusifs E1, E2 et E3 qui surviennent avec la même probabilité. Le joueur 1 peut savoir si E1 s’est réalisé et le joueur 2 peut seulement savoir si E2 s’est réalisé ou non. Que se passe-t-il si les joueurs décident d’adopter les stratégies suivantes :

le joueur 1 joue L1 s’il n’observe pas E1 (L2 sinon)
le joueur 2 joue R1 s’il n’observe pas E2 (R2 sinon).

Pourquoi l’issue du jeu qui émerge suite à cette procédure est-il appelé un équilibre « corrélé » ?

Exercice 5 :

Calculer les équilibres en stratégies pures et mixtes des jeux suivants :

(5,4)(3,3)(3,3)(7,8)
(2,-2)(1,-1)(3,-3)(4,-4)
(1,0)(1,2)(1,1)(0,0)
TD de Théorie des jeux M1
Thème 4 : Jeux répétés

P.J. Cottalorda, M. Heugues

Exercice 1 :

Soit le marché d’un bien homogène produit par deux firmes. La demande inverse de marché est donné par P = 100 - Q et les fonctions de coût des deux firmes sont Ci(qi) = 2qi avec i= 1,2.

Déterminez l’équilibre de cette industrie si chaque firme choisit son niveau de production au début de la période sans communication ave son concurrent.
Même question si les firmes coopèrent de manière à maximiser le profit joint (considérer le cas où les firmes partagent de manière égalitaire les quantités et le profit du cartel).
Quel sera l’équilibre de ce marché s’il n’a lieu que 10 fois, avec chaque firme actualisant ses revenus avec le facteur d actualisation commun ´.
Quel sera l équilibre du marché si le marché peut continuer sas fin, sachant que si une firme dévie de sa stratégie de coopération son concurrent jouera non coopératif jusqu à la fin des temps. Sous quelles conditions la solution coopérative peut-elle émerger comme un équilibre ?
Même question s’il faut à la firme seulement une période pour convaincre son concurrent qu’elle ne déviera plus de la stratégie coopérative ?


Exercice 2:

Supposez que ces deux firmes se font concurrence en prix (duopole de Bertrand). La demande de marché est donnée par D(p) = A – p et les fonctions de coût des deux firmes Ci(qi) = ciqi avec i = 1,2, ci = c < A. Selon les prix fixés au début de chaque période, la demande est partagée entre les deux firmes selon la règle de Bertrand :

0 si pi > pj
Di(pi,pj) = D(p)/2 si pi = pj = p
D(pi) si pi < pj

Déterminez l’équilibre de ce jeu s’il n’a lieu qu’une seule fois et que les firmes se comportent de manière non coopérative.
Même question si les firmes se comportent de manière coopérative et maximisent le profit joint.
Même question si le jeu a lieu 10 fois et que les firmes non coopératives utilisent le facteur d actualisation commun ´.
Même question si le jeu a lieu à l infini avec des firmes non coopératives. Sous quelles conditions peuvent-elles atteindre les gains coopératifs comme un équilibre parfait en sous jeu de ce jeu, sachant que si jamais une firme dévie de la coopération, l’autre la punit en jouant non coopératif jusqu’à la fin du jeu.
TD de Théorie des jeux M1

Thème 5 : Equilibre parfait en sous jeux

P.J. Cottalorda, M. Heugues




Exercice 1 : Bataille des sexes avec option d’entrée

Soit le jeu de la bataille des sexes suivant:

ABA(3,1)(0,0)B(0,0)(1,3)

Quels sont les équilibres de Nash (purs et mixtes) du jeu de la bataille des sexes et les paiements correspondants?

On considère le jeu dans lequel en première étape, le joueur 1 (joueur ligne) a la possibilité d’entrer dans le jeu de la bataille des sexes ou non. S’il refuse de jouer, les paiements sont (2,2).

Représenter le jeu sous forme développée.

Mettre le jeu sous forme stratégique.

Quels sont les équilibres de Nash (purs et mixtes) du jeu ?

Quels sont les équilibres parfaits en sous-jeux du jeu ?

Quel est l’unique équilibre qui subsiste après l’élimination itérative des stratégies faiblement dominées? Quel argument soutient cet équilibre? Expliquer.

Exercice 2 :

Soit le jeu séquentiel à deux joueurs (notés E et I) suivant :






















Expliquez de manière littérale le déroulement du jeu (qui prend quelle décision, quelle est l’information à la disposition des joueurs, etc.).
Précisez l’ensemble de stratégies de chaque joueur.
Donnez la forme stratégique de ce jeu.
Déterminez les équilibres de Nash de ce jeu.
Déterminez les sous-jeux de ce jeu et leurs équilibres de Nash.
Déterminez les équilibres parfaits en sous-jeux de ce jeu.


TD de Théorie des jeux M1

Thème 6 : Equilibre bayésien
P.J. Cottalorda, M. Heugues

Exercice 1 :

Considérez un jeu simultané dans lequel les ensembles de stratégies des deux joueurs sont donnés par Si = {-2, 0, 1}. La fonction d’utilité du joueur 1 est connue avec certitude par les deux joueurs et elle est donnée par u1(s) = s12. Mais le joueur 1 ne connaît pas exactement celle du joueur 2 qui peut être de deux types u2A (s) = s1s2 ou u2B (s) = (s1s2)² avec :

P[A] = ½ = 1 - P[B]

L’information est asymétrique dans la mesure où le joueur 2 connaît bien sûr sa fonction d’utilité. Tous ces éléments sont par ailleurs connaissance commune.

Donnez les types des deux joueurs.
Donnez la forme stratégique du jeu correspondant à chacun des types du joueur 2 (dans les deux cas, il vous faut calculer les paiements associés à chacune des stratégies à l’aide des fonctions d’utilité). Déterminez les équilibres de Nash dans ces jeux.
Donnez l’arbre du jeu après avoir complété l’information avec la méthode d’Harsanyi.
Représentez ce jeu complet sous forme stratégique.
Déterminez les fonctions de meilleure réponse du joueur 1 et des deux types du joueur 2.
Déterminez l’équilibre de Nash bayésien de ce jeu.


Exercice 2 : Le duopole de Cournot avec information incomplète

On considère un duopole produisant un bien homogène dont la demande inverse est donnée par p(Q) = A - Q mais avec une incertitude initiale sur le niveau de la demande. La fonction de demande sur le marché peut être de 2 niveaux selon la conjoncture :
A " {AF, AE} tel que AF